|本期目录/Table of Contents|

[1]戴俊涛,冯康博,廖 杰,等.布洛芬的连续流合成研究进展[J].武汉工程大学学报,2024,46(06):591-598.[doi:10.19843/j.cnki.CN42-1779/TQ.202312016]
 DAI Juntao,FENG Kangbo,LIAO Jie,et al.Progress in continuous flow synthesis of ibuprofen[J].Journal of Wuhan Institute of Technology,2024,46(06):591-598.[doi:10.19843/j.cnki.CN42-1779/TQ.202312016]
点击复制

布洛芬的连续流合成研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
591-598
栏目:
化学与化学工程
出版日期:
2024-12-31

文章信息/Info

Title:
Progress in continuous flow synthesis of ibuprofen
文章编号:
1674 - 2869(2024)06 - 0591 - 08
作者:
戴俊涛1冯康博1廖 杰2龙 姣1张双双1朱园园3古双喜*1
1. 武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室,湖北 武汉 430205;
2. 湖北省染料中间体产业技术研究院,湖北 石首 434400;
3. 武汉工程大学化学与环境工程学院,湖北 武汉 430205

Author(s):
DAI Juntao1 FENG Kangbo1 LIAO Jie2 LONG Jiao1 ZHANG Shuangshuang1
1. Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; 2. Hubei Industrial Technology Institute of Dye Intermediates, Shishou 434400, China;3. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

关键词:
布洛芬连续流微通道合成工艺进展
Keywords:
ibuprofen continuous flow microchannels synthesis process progress
分类号:
TQ463+.25
DOI:
10.19843/j.cnki.CN42-1779/TQ.202312016
文献标志码:
A
摘要:
布洛芬是一种临床上常用的非甾体抗炎药,兼具解热、镇痛及抗炎抗风湿的功效。自上市以来,布洛芬因其控制高热效果好、镇痛作用强和相对安全迅速成为解热镇痛的支柱药品之一,市场需求巨大。然而布洛芬的传统釜式生产工艺不仅效率低,而且会产生较多废料,污染严重。近些年来,新兴的连续流反应技术基于物料在微通道中的强混合效果和高效的传热传质可以有效避免上述问题,从而提高生产效率,降低成本。总结了近年来连续流反应技术在布洛芬合成中的研究进展,其中较为成熟的是Snead提出的一种合成工艺:以异丁基苯为原料,经过傅-克酰基化、1,2-芳基迁移和水解,仅需三步合成布洛芬钠盐,总收率达72%。同时,一些新试剂和新方法,如“超级碱”的使用、光催化条件下的连续流合成,为布洛芬的连续流合成提供了新的思路和途径。

Abstract:
Ibuprofen is a non-steroidal anti-inflammatory drug widely used in clinical settings for its antipyretic, analgesic, anti-inflammatory, and anti-rheumatic properties. Its ability to manage high fever, provide potent pain relief with a relatively safe profile has made it a staple in the treatment of fever and pain, generating significant market demand. Nevertheless, the conventional batch manufacturing process for ibuprofen is not only inefficient but also generates substantial waste, causing serious pollution. In recent years, emerging continuous flow reaction technology based on the strong mixing effect and efficient heat and mass transfer of materials in microchannels has effectively addressed the aforementimed issues, enhancing production efficiency and reducing costs. This review summarizes the recent research progress in continuous flow reaction technology for the synthesis of ibuprofen. Notably, a mature synthesis process proposed by Snead involves using isobutylbenzene as the starting material and synthesizing ibuprofen sodium salt in just three steps through Friedel-Crafts acylation, 1,2-aryl migration, and hydrolysis, achieving a total yield of 72%. Meanwhile, the introduction of new reagents and methods, such as the use of "super bases" and continuous flow synthesis under photocatalytic conditions, presents innovative ideas and approaches for the continuous flow synthesis of ibuprofen.

参考文献/References:

[1] RUDY A C, KNOGHT P M, BRATER D C, et al. Stereoselective metabolism of ibuprofen in humans: administration of R-, S- and racemic ibuprofen[J]. Journal of Pharmacology and Experimental Therapeutics, 1991, 259(3): 1133-1139.

[2] ALBERT K S, GERNAAT C M. Pharmacokinetics of ibuprofen[J]. American Journal of Medicine, 1984, 77(1): 40-46.
[3] RHEE Y S, CHANG S Y, PARK C W, et al. Optimization of ibuprofen gel formulations using experimental design technique for enhanced transdermal penetration[J]. International Journal of Pharmaceutics, 2008, 364(1): 14-20.
[4] WANG X H, SU T, ZHAO J, et al. Fabrication of polysaccharides-based hydrogel films for transdermal sustained delivery of ibuprofen[J]. Cellulose, 2020, 27:10277-10292.
[5] DESBOROUGH M J R, KEELING D M. The aspirin story-from willow to wonder drug[J]. British Journal of Haematology, 2017, 177(5): 674-683.
[6] 于凤丽, 赵玉亮, 金子林. 布洛芬合成绿色化进展[J]. 有机化学, 2003, 23(11): 1198-1204.
[7] NICHOLSON J S, ADAMS S S. Phenyl propionic acids: US3385886[P]. 1968-05-28.
[8] ELANGO V, MURPHY M A, SMITH B L, et al. Method for producing ibuprofen: US4981995[P]. 1991-01-01.
[9] MCQUADE D T, SEEBERGER P H. Applying flow chemistry: methods, materials, and multistep synthesis[J]. Journal of Organic Chemistry, 2013, 78(13): 6384-6389.
[10] PLUTSCHACK M B, PIEBER B, GILMORE K, et al. The Hitchhiker’s guide to flow chemistry[J]. 2017, 117(18): 11796-11893.
[11] LEY S V, FITZPATRICK D E, INGHAM R J, et al. Organic synthesis: march of the machines[J]. Angewandte Chemie (International Edition),2015, 54(11): 3449-3464.
[12] JENSEN K F, REIZMAN B J, NEWMAN S G. Tools for chemical synthesis in microsystems[J]. Lab Chip, 2014, 14(17): 3206-3212.
[13] WEGNER J, CEYLAN S, KIRSCHNING A. Flow chemistry-a key enabling technology for (multistep) organic synthesis[J]. Advanced Synthesis & Catalysis, 2012, 354(1): 17-57.
[14] BAXENDALE I R. The integration of flow reactors into synthetic organic chemistry[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(4): 519-552.
[15] MYERS R M, FITZPATRICK D E, TURNER R M, et al. Flow chemistry meets advanced functional materials[J]. Chemistry-A European Journal, 2014, 20(39): 12348-12366.
[16] BAUMANN M, BAXENDALE I R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry[J]. Beilstein Journal of Organic Chemistry, 2015, 11(1): 1194-1219.
[17] 马涛, 马小波, 徐志宏, 等. 连续流微反应[J]. 化学进展, 2016, 28(6): 829-838.
[18] PASTRE J C, BROWNE D L, LEY S V. Flow chemistry syntheses of natural products[J]. Chemical Society Reviews, 2013, 42(23): 8849-8869.
[19] ROGERS L, JENSEN K F. Continuous manufactur-ing-the green chemistry promise[J]. Green Chemistry, 2019, 21(13): 3481-3498.
[20] BRITTON J, RASTON C L. Multi-step continuous-flow synthesis[J]. Chemical Society Reviews, 2017, 46(5): 1250-1271.
[21] MALET-SANZ L, SUSANNE F. Continuous flow synthesis. A pharma perspective[J]. Journal of Medicinal Chemistry, 2012, 55(9): 4062-4098.
[22] GUERRA J, CANTILLO D, KAPPE C O. Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow[J]. Catalysis Science & Technology, 2016, 6(13): 4695-4699.
[23] AUDUBERT C, MARIN O J G, LEBEL H. Batch and continuous-flow one-pot processes using amine diazotization to produce silylated diazo reagents[J]. Angewandte Chemie (International Edition), 2017, 56(22): 6294-6297.
[24] 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439.
[25] KOLB G. Review: microstructured reactors for distributed and renewable production of fuels and electrical energy[J]. Chemical Engineering & Processing: Process Intensification, 2013, 65: 1-44.
[26] WILES C, WATTS P. Continuous flow reactors, a tool for the modern synthetic chemist[J]. European Journal of Organic Chemistry, 2008:1655-1671.
[27] 赵晨熙, 王池, 董江湖, 等. β-内酰胺酶抑制剂关键中间体的微通道技术合成[J]. 武汉工程大学学报, 2024, 46(1): 7-11.
[28] 杨昭,祝宏,曾祥聪,等. 美乐托宁微反应合成系统的开发[J]. 武汉工程大学学报,2018,40(3):259-262.
[29] 刘一寰,胡欣,朱宁,等. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展,2018,30(8):1133-1142.
[30] JOVANOVIC J, REBROV E V, NIJHUIS T A, et al. Liquid-liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance[J]. Industrial & Engineering Chemistry Research, 2012, 51: 1015-1026.
[31] MCGOVERN S, HARISH G, PAI C S, et al. Multiphase flow regimes for hydrogenation in a catalyst-trap microreactor[J]. Chemical Engineering Journal, 2008, 135: S229-S236.
[32] 李晓佳, 李松. 微通道反应器在药物产业化中的应用前景[J]. 中国医药工业杂志,2023,54(3):320-329.
[33] MOVSISYAN M, DELBEKE E I P, BERTON J K E T, et al. Taming hazardous chemistry by continuous flow technology[J]. Chemical Society Reviews, 2016, 45(18): 4892-4928.
[34] QUIRAM D J, JENSEN K F, SCHMIDT M A, et al. Integrated microreactor system for gas-phase catalytic reactions. 3. Microreactor system design and system automation[J]. Industrial & Engineering Chemistry Research, 2007, 46(25): 8319-8335.
[35] LEROU J J, TONKOVICH A L, SILVA L, et al. Microchannel reactor architecture enables greener processes[J]. Chemical Engineering Science, 2010, 65(1): 380-385.
[36] WANG Q, GURSEL I V, SHANG M J, et al. Life cycle assessment for the direct synthesis of adipic acid in microreactors and benchmarking to the commercial process[J]. Chemical Engineering Journal, 2013, 234: 300-311.
[37] KRALISCH D, KREISEL G. Assessment of the ecological potential of microreaction technology[J]. Chemical Engineering Science,2007,62(4):1094-1100.
[38] 苏为科, 余志群. 连续流反应技术开发及其在制药危险工艺中的应用[J]. 中国医药工业杂志, 2017, 48(4): 469-482.
[39] 刘玎, 朱园园, 古双喜, 等. 流动化学在卤化反应中的应用[J]. 有机化学, 2021, 41(3): 1002-1011.
[40] 冯康博, 陈炯, 古双喜, 等. 全连续流反应技术在药物合成中的新进展(2019—2022)[J]. 有机化学, 2024, 44(2): 378-397.
[41] BOGDAN A R, POE S L, KUBIS D C, et al. The continuous-flow synthesis of ibuprofen[J]. Angewandte Chemie (International Edition), 2009, 48(45): 8547-8550.
[42] 程荡, 陈芬儿. 连续流微反应技术在药物合成中的应用研究进展[J]. 化工进展, 2019,38(1):556-575.
[43] SNEAD D R, JAMISON T F. A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing[J]. Angewandte Chemie (International Edition),2015,54(3):983-987.
[44] YAMAUCHI T, HATTORI K, NAKAO K, et al. A facile and efficient preparative method of methyl 2-arylpropanoates by treatment of propiophenones and their derivatives with iodine or iodine chlorides[J]. Journal of Organic Chemistry, 1988, 53(20): 4858-4859.
[45] KABESHOV M A, MUSIO B, MURRAY P R D, et al. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology[J]. Organic Letter, 2014, 16(17): 4618-4621.
[46]ARAI K, WIRTH T. Rapid electrochemical deprotection of the isonicotinyloxycarbonyl group from carbonates and thiocarbonates in a microfluidic reactor[J]. Organic Process Research & Development, 2014, 18(11): 1377-1381.
[47] BEATTY J W, STEPHENSON C R J. Synthesis of (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine enabled by photoredox catalysis in flow[J]. Journal of the American Chemical Society, 2014, 136(29): 10270-10273.
[48] LEVESQUE F, SEEBERGER P H. Continuous-flow synthesis of the snti-malaria drug artemisinin[J]. Angewandte Chemie (International Edition), 2012, 51(7): 1706-1709.
[49] GILMORE K, SEEBERGER P H. Continuous flow photochemistry[J]. Chemical Record, 2014, 14(3): 410-418.
[50] BAUMANN M, BAXENDALE I R. Continuous photochemistry the flow synthesis of ibuprofen via a photo-Favorskii rearrangement[J]. Reaction Chemistry & Engineering, 2016, 1(2): 147-150.
[51] CHIRTEL J S,FLA T,MARK A M, et al. Hydroxyacyl-amino acids and their polymers: US 2786045[P]. 1953-01-21.
[52] 邢将军, 张新荣, 刘加根, 等. 一种制备高光学活性的2-氯丙酰氯的方法:201010121575.0[P]. 2011-09-21.
[53] LEE H J, KIM H J, KIM D P. From p-Xylene to ibuprofen in flow: 3-step synthesis via unified sequence of chemoselective C-H metalations[J]. Chemistry-A European Journal, 2019, 25(50): 11641-11645.
[54] SCHLOSSER M. The activation of organolithium reagents[J]. Journal of Organometallic Chemistry, 1967, 8(1): 9-16.
[55] KIM H, YIN Z, SAKURAI H, et al. Sequential double C-H functionalization of 2,5-norbornadiene in flow[J]. Reaction Chemistry & Engineering, 2018, 3(5): 635-639.
[56] FAIGL F, SCHLOSSER M. A one-pot synthesis of ibuprofen involving three consecutive steps of superbase metalation[J]. Tetrahedron Letter, 1991, 32(28): 3369-3370.
[57] NAGAKI A, TAKAHASHI Y, YOSHIDA J. Extremely fast gas/liquid reactions in flow microreactors: carboxylation of short-lived organolithiums[J]. Chemistry-A European Journal,2014, 20(26): 7931-7934.
[58] WU J, YANG X Q, HE Z, et al. Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents[J]. Angewandte Chemie (International Edition),2014,126:8556-8560.
[59] HA M W, PAEK S M. Recent advances in the synthesis of ibuprofen and naproxen[J]. Molecules, 2021, 26(16): 4792.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-12-10
基金项目:国家自然科学基金(22074114、22377097);湖北省自然科学基金(2024AFB233);湖北省教育厅青年人才项目(Q20221513)
作者简介:戴俊涛,硕士研究生。Email:[email protected]
*通信作者:古双喜,博士,教授。Email:[email protected]
引文格式:戴俊涛, 冯康博, 廖杰, 等. 布洛芬的连续流合成研究进展[J]. 武汉工程大学学报,2024,46(6):591-598.
更新日期/Last Update: 2024-12-30