[2] ALBERT K S, GERNAAT C M. Pharmacokinetics of ibuprofen[J]. American Journal of Medicine, 1984, 77(1): 40-46.
[3] RHEE Y S, CHANG S Y, PARK C W, et al. Optimization of ibuprofen gel formulations using experimental design technique for enhanced transdermal penetration[J]. International Journal of Pharmaceutics, 2008, 364(1): 14-20.
[4] WANG X H, SU T, ZHAO J, et al. Fabrication of polysaccharides-based hydrogel films for transdermal sustained delivery of ibuprofen[J]. Cellulose, 2020, 27:10277-10292.
[5] DESBOROUGH M J R, KEELING D M. The aspirin story-from willow to wonder drug[J]. British Journal of Haematology, 2017, 177(5): 674-683.
[6] 于凤丽, 赵玉亮, 金子林. 布洛芬合成绿色化进展[J]. 有机化学, 2003, 23(11): 1198-1204.
[7] NICHOLSON J S, ADAMS S S. Phenyl propionic acids: US3385886[P]. 1968-05-28.
[8] ELANGO V, MURPHY M A, SMITH B L, et al. Method for producing ibuprofen: US4981995[P]. 1991-01-01.
[9] MCQUADE D T, SEEBERGER P H. Applying flow chemistry: methods, materials, and multistep synthesis[J]. Journal of Organic Chemistry, 2013, 78(13): 6384-6389.
[10] PLUTSCHACK M B, PIEBER B, GILMORE K, et al. The Hitchhiker’s guide to flow chemistry[J]. 2017, 117(18): 11796-11893.
[11] LEY S V, FITZPATRICK D E, INGHAM R J, et al. Organic synthesis: march of the machines[J]. Angewandte Chemie (International Edition),2015, 54(11): 3449-3464.
[12] JENSEN K F, REIZMAN B J, NEWMAN S G. Tools for chemical synthesis in microsystems[J]. Lab Chip, 2014, 14(17): 3206-3212.
[13] WEGNER J, CEYLAN S, KIRSCHNING A. Flow chemistry-a key enabling technology for (multistep) organic synthesis[J]. Advanced Synthesis & Catalysis, 2012, 354(1): 17-57.
[14] BAXENDALE I R. The integration of flow reactors into synthetic organic chemistry[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(4): 519-552.
[15] MYERS R M, FITZPATRICK D E, TURNER R M, et al. Flow chemistry meets advanced functional materials[J]. Chemistry-A European Journal, 2014, 20(39): 12348-12366.
[16] BAUMANN M, BAXENDALE I R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry[J]. Beilstein Journal of Organic Chemistry, 2015, 11(1): 1194-1219.
[17] 马涛, 马小波, 徐志宏, 等. 连续流微反应[J]. 化学进展, 2016, 28(6): 829-838.
[18] PASTRE J C, BROWNE D L, LEY S V. Flow chemistry syntheses of natural products[J]. Chemical Society Reviews, 2013, 42(23): 8849-8869.
[19] ROGERS L, JENSEN K F. Continuous manufactur-ing-the green chemistry promise[J]. Green Chemistry, 2019, 21(13): 3481-3498.
[20] BRITTON J, RASTON C L. Multi-step continuous-flow synthesis[J]. Chemical Society Reviews, 2017, 46(5): 1250-1271.
[21] MALET-SANZ L, SUSANNE F. Continuous flow synthesis. A pharma perspective[J]. Journal of Medicinal Chemistry, 2012, 55(9): 4062-4098.
[22] GUERRA J, CANTILLO D, KAPPE C O. Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow[J]. Catalysis Science & Technology, 2016, 6(13): 4695-4699.
[23] AUDUBERT C, MARIN O J G, LEBEL H. Batch and continuous-flow one-pot processes using amine diazotization to produce silylated diazo reagents[J]. Angewandte Chemie (International Edition), 2017, 56(22): 6294-6297.
[24] 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439.
[25] KOLB G. Review: microstructured reactors for distributed and renewable production of fuels and electrical energy[J]. Chemical Engineering & Processing: Process Intensification, 2013, 65: 1-44.
[26] WILES C, WATTS P. Continuous flow reactors, a tool for the modern synthetic chemist[J]. European Journal of Organic Chemistry, 2008:1655-1671.
[27] 赵晨熙, 王池, 董江湖, 等. β-内酰胺酶抑制剂关键中间体的微通道技术合成[J]. 武汉工程大学学报, 2024, 46(1): 7-11.
[28] 杨昭,祝宏,曾祥聪,等. 美乐托宁微反应合成系统的开发[J]. 武汉工程大学学报,2018,40(3):259-262.
[29] 刘一寰,胡欣,朱宁,等. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展,2018,30(8):1133-1142.
[30] JOVANOVIC J, REBROV E V, NIJHUIS T A, et al. Liquid-liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance[J]. Industrial & Engineering Chemistry Research, 2012, 51: 1015-1026.
[31] MCGOVERN S, HARISH G, PAI C S, et al. Multiphase flow regimes for hydrogenation in a catalyst-trap microreactor[J]. Chemical Engineering Journal, 2008, 135: S229-S236.
[32] 李晓佳, 李松. 微通道反应器在药物产业化中的应用前景[J]. 中国医药工业杂志,2023,54(3):320-329.
[33] MOVSISYAN M, DELBEKE E I P, BERTON J K E T, et al. Taming hazardous chemistry by continuous flow technology[J]. Chemical Society Reviews, 2016, 45(18): 4892-4928.
[34] QUIRAM D J, JENSEN K F, SCHMIDT M A, et al. Integrated microreactor system for gas-phase catalytic reactions. 3. Microreactor system design and system automation[J]. Industrial & Engineering Chemistry Research, 2007, 46(25): 8319-8335.
[35] LEROU J J, TONKOVICH A L, SILVA L, et al. Microchannel reactor architecture enables greener processes[J]. Chemical Engineering Science, 2010, 65(1): 380-385.
[36] WANG Q, GURSEL I V, SHANG M J, et al. Life cycle assessment for the direct synthesis of adipic acid in microreactors and benchmarking to the commercial process[J]. Chemical Engineering Journal, 2013, 234: 300-311.
[37] KRALISCH D, KREISEL G. Assessment of the ecological potential of microreaction technology[J]. Chemical Engineering Science,2007,62(4):1094-1100.
[38] 苏为科, 余志群. 连续流反应技术开发及其在制药危险工艺中的应用[J]. 中国医药工业杂志, 2017, 48(4): 469-482.
[39] 刘玎, 朱园园, 古双喜, 等. 流动化学在卤化反应中的应用[J]. 有机化学, 2021, 41(3): 1002-1011.
[40] 冯康博, 陈炯, 古双喜, 等. 全连续流反应技术在药物合成中的新进展(2019—2022)[J]. 有机化学, 2024, 44(2): 378-397.
[41] BOGDAN A R, POE S L, KUBIS D C, et al. The continuous-flow synthesis of ibuprofen[J]. Angewandte Chemie (International Edition), 2009, 48(45): 8547-8550.
[42] 程荡, 陈芬儿. 连续流微反应技术在药物合成中的应用研究进展[J]. 化工进展, 2019,38(1):556-575.
[43] SNEAD D R, JAMISON T F. A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing[J]. Angewandte Chemie (International Edition),2015,54(3):983-987.
[44] YAMAUCHI T, HATTORI K, NAKAO K, et al. A facile and efficient preparative method of methyl 2-arylpropanoates by treatment of propiophenones and their derivatives with iodine or iodine chlorides[J]. Journal of Organic Chemistry, 1988, 53(20): 4858-4859.
[45] KABESHOV M A, MUSIO B, MURRAY P R D, et al. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology[J]. Organic Letter, 2014, 16(17): 4618-4621.
[46]ARAI K, WIRTH T. Rapid electrochemical deprotection of the isonicotinyloxycarbonyl group from carbonates and thiocarbonates in a microfluidic reactor[J]. Organic Process Research & Development, 2014, 18(11): 1377-1381.
[47] BEATTY J W, STEPHENSON C R J. Synthesis of (-)-pseudotabersonine, (-)-pseudovincadifformine, and (+)-coronaridine enabled by photoredox catalysis in flow[J]. Journal of the American Chemical Society, 2014, 136(29): 10270-10273.
[48] LEVESQUE F, SEEBERGER P H. Continuous-flow synthesis of the snti-malaria drug artemisinin[J]. Angewandte Chemie (International Edition), 2012, 51(7): 1706-1709.
[49] GILMORE K, SEEBERGER P H. Continuous flow photochemistry[J]. Chemical Record, 2014, 14(3): 410-418.
[50] BAUMANN M, BAXENDALE I R. Continuous photochemistry the flow synthesis of ibuprofen via a photo-Favorskii rearrangement[J]. Reaction Chemistry & Engineering, 2016, 1(2): 147-150.
[51] CHIRTEL J S,FLA T,MARK A M, et al. Hydroxyacyl-amino acids and their polymers: US 2786045[P]. 1953-01-21.
[52] 邢将军, 张新荣, 刘加根, 等. 一种制备高光学活性的2-氯丙酰氯的方法:201010121575.0[P]. 2011-09-21.
[53] LEE H J, KIM H J, KIM D P. From p-Xylene to ibuprofen in flow: 3-step synthesis via unified sequence of chemoselective C-H metalations[J]. Chemistry-A European Journal, 2019, 25(50): 11641-11645.
[54] SCHLOSSER M. The activation of organolithium reagents[J]. Journal of Organometallic Chemistry, 1967, 8(1): 9-16.
[55] KIM H, YIN Z, SAKURAI H, et al. Sequential double C-H functionalization of 2,5-norbornadiene in flow[J]. Reaction Chemistry & Engineering, 2018, 3(5): 635-639.
[56] FAIGL F, SCHLOSSER M. A one-pot synthesis of ibuprofen involving three consecutive steps of superbase metalation[J]. Tetrahedron Letter, 1991, 32(28): 3369-3370.
[57] NAGAKI A, TAKAHASHI Y, YOSHIDA J. Extremely fast gas/liquid reactions in flow microreactors: carboxylation of short-lived organolithiums[J]. Chemistry-A European Journal,2014, 20(26): 7931-7934.
[58] WU J, YANG X Q, HE Z, et al. Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents[J]. Angewandte Chemie (International Edition),2014,126:8556-8560.
[59] HA M W, PAEK S M. Recent advances in the synthesis of ibuprofen and naproxen[J]. Molecules, 2021, 26(16): 4792.