|本期目录/Table of Contents|

[1]肖 越,安 楠,王丽雯,等. 二维钴氧化物纳米片的气相合成和拉曼光谱研究 [J].武汉工程大学学报,2024,46(06):631-636.[doi:10.19843/j.cnki.CN42-1779/TQ.202404006]
 XIAO Yue,AN Nan,WANG Liwen,et al. Vapor phase synthesis and Raman spectroscopy of two-dimensional cobalt oxide nanoflakes [J].Journal of Wuhan Institute of Technology,2024,46(06):631-636.[doi:10.19843/j.cnki.CN42-1779/TQ.202404006]
点击复制

二维钴氧化物纳米片的气相合成和拉曼光谱研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
631-636
栏目:
材料科学与工程
出版日期:
2024-12-31

文章信息/Info

Title:
Vapor phase synthesis and Raman spectroscopy of two-dimensional cobalt oxide nanoflakes
文章编号:
1674 - 2869(2024)06 - 0631 - 06
作者:
武汉工程大学光电信息与能源工程学院,湖北 武汉 430205
Author(s):
School of Optical Information and Energy Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
Keywords:
分类号:
O482.54
DOI:
10.19843/j.cnki.CN42-1779/TQ.202404006
文献标志码:
A
摘要:
为探索反铁磁材料,以六水合氯化钴(CoCl2·6H2O)为前驱体,采用化学气相沉积(CVD)法在蓝宝石(Al2O3)和云母衬底上生长出二维钴氧化物纳米片。通过改变生长过程中的氧气流量实现四氧化三钴(Co3O4)和氧化钴(CoO)二维纳米片的合成。通过光学显微镜、原子力显微镜和拉曼(Raman)光谱对合成的钴氧化物纳米片的形貌、厚度、物相结构、磁性以及稳定性进行表征分析。Co3O4和CoO纳米片的形状均为三角形,Co3O4纳米片的横向尺寸能达到18 μm,厚度约24 nm。CoO纳米片的横向尺寸能达到20 μm,厚度可薄至12 nm。CoO纳米片在低温下出现磁性Raman峰,表明了CoO的低温磁振子响应。不同功率下的Raman光谱显示,在12 mW的激光激发下,CoO相变为Co3O4。室温下放置1个月后CoO纳米片未发生氧化,表明其具有良好的室温稳定性。
Abstract:
To explore antiferromagnetic materials,two-dimensional cobalt oxide nanoflakes were synthesized on sapphire (Al2O3) and mica substrates via chemical vapor deposition (CVD) using cobalt chloride hexahydrate (CoCl2·6H2O) as the precursor. By adjusting the oxygen flux during the growth process,the synthesis of two-dimensional tricobalt tetraoxide (Co3O4) and cobaltous oxide (CoO) nanoflakes was achieved. The morphology,thickness,phase structure,magnetism,and stability of the synthesized cobalt oxide nanoflakes were characterized by optical microscopy,atomic force microscopy and Raman spectroscopy. The results revealed that both Co3O4 and CoO nanoflakes had a triangular shape. The lateral size of Co3O4 nanoflakes could reach up to 18 μm with a thickness of approximately 24 nm. Similarly,the lateral size of CoO nanoflakes could reach up to 20 μm with a minimum thickness of 12 nm. At low temperatures,CoO nanoflakes exhibited magnetic Raman peaks,indicating their response to low-temperature magnons. Raman spectra at different laser powers demonstrated the transformation of CoO phase into Co3O4 under 12 mW excitation. Additionally,the CoO nanoflakes remained unoxidized after being kept at room temperature for a month, demonstrating excellent stability at room temperature.

参考文献/References:

[1] ?ELEZNY J,WADLEY P,OLEJNíK K,et al. Spin transport and spin torque in antiferromagnetic devices [J]. Nature Physics,2018,14(3):220-228.
[2] KUNDU A K, BARMAN S, MENON K S R. Evolution of surface antiferromagnetic Néel temperature with film coverage in ultrathin MnO films on Ag (001) [J]. Journal of Magnetism and Magnetic Materials,2018,466:186-191.
[3] JIA Z Y,WANG W J,LI Z C, et al. Morphology-tunable synthesis of intrinsic room-temperature ferromagnetic γ-Fe2O3 nanoflakes [J]. ACS Applied Materials & Interfaces,2021,13(20):24051-24061.
[4] WANG T, FAN Z W, XUE W H, et al. Controlled growth and size-dependent magnetic domain states of 2D γ-Fe2O3 [J]. Nano Letters,2023,23(22):10498-10504.
[5] QIU J,NGUYEN T H, KIM S,et al. Two-dimensional correlation spectroscopy analysis of Raman spectra of NiO nanoparticles [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2022,280:121498.
[6] TANG Y J, SMITH D J, ZINK B L, et al. Finite size effects on the moment and ordering temperature in antiferromagnetic CoO layers [J]. Physical Review B,2003,67(5):054408.
[7] FONTAí?A-TROITI?O N, LIéBANA-VI?AS S,RODRíGUEZ-GONZáLEZ B,et al. Room-temperature ferromagnetism in antiferromagnetic cobalt oxide nanooctahedra [J]. Nano Letters,2014,14(2):640-647.
[8] RAVINDRA A V, BEHERA B C, PADHAN P, et al. Tailoring of crystal phase and Néel temperature of cobalt monoxides nanocrystals with synthetic approach conditions [J]. Journal of Applied Physics,2014,116(3):033912.
[9] NGUYEN T B,HUANG C P,DOONG R A, et al. CoO-3D ordered mesoporous carbon nitride (CoO@mpgCN) composite as peroxymonosulfate activator for the degradation of sulfamethoxazole in water [J]. Journal of Hazardous Materials,2021,401:123326.
[10] YU D D,ZHANG Y,YU H Q,et al. Low temperature synthesis of NiO/CoO nanostructures to enhance their low temperature oxygen reduction catalysis [J]. Micron,2022,161:103326.
[11] YI C F,HUO J,LIU Z G. Co single atoms and CoO clusters over nitrogen-doped hollow carbon spheres for synergistic oxidation of aromatic alkanes [J]. Chemical Engineering Journal,2023,467:143541.
[12] WANG G T, FAN J H, XIE Y,et al. Monodisperse Y-type CoO hierarchical nanostructure/reduced graphene oxide for improved NO2 detection at room temperature with enhanced moisture resistance [J]. Sensors and Actuators B:Chemical,2023,394:134391.
[13] LIU W F,ZHANG Z,ZHANG Y N,et al. Interior and exterior decoration of transition metal oxide through Cu0/Cu+ co-doping strategy for high-performance supercapacitor [J]. Nano-Micro Letters,2021,13:61.
[14] PATRA D C,CHAKRABORTY P,DEKA N,et al. Electrochemical nitric oxide detection using gold deposited cobalt oxide nanostructures [J]. Chemical Physics Letters,2022,802:139795.
[15] 张曼,范敏.四氧化三钴及掺杂材料电催化性能的研究进展[J].化工新型材料,2023,51(12):60-66.
[16] 贺胜,林志东.纳米Co3O4的制备及其臭氧辅助下对乙醇的气敏性能[J].武汉工程大学学报,2021,43(6):622-625,631.
[17] SARIF M, HILGERT J, KHAN I, et al. Selective synthesis of monodisperse CoO nanooctahedra as catalysts for electrochemical water oxidation [J]. Langmuir,2020,36(46):13804-13816.
[18] WANG F, YU Y H, YIN X, et al. Wafer-scale synthesis of ultrathin CoO nanosheets with enhanced electrochemical catalytic properties [J]. Journal of Materials Chemistry A,2017,5(19):9060-9066.
[19] 李紫琪,赵培,刘莎,等. 化学气相沉积法制备碳化铬薄膜的研究[J]. 武汉工程大学学报,2021,43(2):181-186,191.
[20] 陈志杰,潘天宇,徐源来,等. 激光化学气相沉积法制备多层氧化铈缓冲层薄膜[J]. 武汉工程大学学报,2022,44(1):42-47.
[21] UTAMA M I B,ZHANG Q,ZHANG J,et al. Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy [J]. Nanoscale,2013,5(9):3570-3588.
[22] HUANG L,YU Y F,LI C,et al. Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates:a case study of SnSe2 [J]. The Journal of Physical Chemistry C,2013,117(12):6469-6475.
[23] HUANG W J,GAN L,YANG H T,et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition [J]. Advanced Functional Materials,2017,27(36):1702448.
[24] RIVAS-MURIAS B, SALGUEIRI?O V. Thermo-dynamic CoO-Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals[J]. Journal of Raman Spectroscopy,2017,48(6):837-841.
[25] MIRONOVA-ULMANE N,KUZMIN A,GRUBE M. Raman and infrared spectromicroscopy of manganese oxides [J]. Journal of Alloys and Compounds,2009,480(1):97-99.
[26] SINGH R K. Many body interactions in binary ionic solids [J]. Physics Reports,1982,85(5):259-401.
[27] LI Y,QIU W L,QIN F,et al. Identification of cobalt oxides with Raman scattering and Fourier transform infrared spectroscopy [J]. The Journal of Physical Chemistry C,2016,120(8):4511-4516.
[28] HA T D,YEN M, LAI Y H, et al. Mechanically tunable exchange coupling of Co/CoO bilayers on flexible muscovite substrates [J]. Nanoscale,2020,12(5):3284-3291.
[29] HAYES R R,PERRY C H. Magnetic excitations in cobalt oxide [J]. Solid State Communications,1974,14(2):173-175.
[30] STRUZHKIN V V,GONCHAROV A F,SYASSEN K. Effect of pressure on magnetic excitations in CoO [J]. Materials Science and Engineering:A,1993,168(1):107-110.

相似文献/References:

[1]何 珂,刘善堂,*.SnO2-WO3复合金属氧化物对丙酮的气敏性能[J].武汉工程大学学报,2019,(04):311.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 002]
 HE Ke,LIU Shantang,*.Acetone Sensing Properties of SnO2-WO3 Metal Oxide Composites[J].Journal of Wuhan Institute of Technology,2019,(06):311.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 002]

备注/Memo

备注/Memo:
收稿日期:2024-04-03
基金项目:国家自然科学基金(51902227);武汉工程大学第十四届研究生教育创新基金(CX2022480)
作者简介:肖 越,硕士研究生。Email:[email protected]
*通信作者:陈相柏,博士,教授。Email:[email protected]
引文格式:肖越,安楠,王丽雯,等. 二维钴氧化物纳米片的气相合成和拉曼光谱研究[J]. 武汉工程大学学报,2024,46(6):631-636.
更新日期/Last Update: 2024-12-30