|本期目录/Table of Contents|

[1]夏 丽,李海玥,李 芹,等.生物对汞的耐受与转化研究进展[J].武汉工程大学学报,2024,46(06):644-648.[doi:10.19843/j.cnki.CN42-1779/TQ.202404029]
 XIA Li,LI Haiyue,LI Qin,et al.Research progress on organisms’ tolerance to and transformation of mercury[J].Journal of Wuhan Institute of Technology,2024,46(06):644-648.[doi:10.19843/j.cnki.CN42-1779/TQ.202404029]
点击复制

生物对汞的耐受与转化研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
644-648
栏目:
生物与环境工程
出版日期:
2024-12-31

文章信息/Info

Title:
Research progress on organisms’ tolerance to and transformation of mercury
文章编号:
1674 - 2869(2024)06 - 0649 - 08
作者:
1. 福建师范大学生命科学学院,福建 福州 350117;
2. 工业微生物教育部工程研究中心,福建 福州 350117
Author(s):
1. College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
2. Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou 350117, China
关键词:
Keywords:
分类号:
R971
DOI:
10.19843/j.cnki.CN42-1779/TQ.202404029
文献标志码:
A
摘要:
汞污染对人体造成了严重的健康威胁,对于汞的污染处理目前仍未有较好的解决方式。而了解生物对汞的耐受与转化机制,对探究汞污染降解至关重要。综述了汞的毒性作用、生物对汞的耐受与转化等,为汞污染的治理提供理论线索。在汞的危害方面,总结了有机汞和无机汞对人体器官可造成的毒性危害的机制以及引发的疾病,为深入了解汞对人体的生命活动的基本规律和疾病的发生机制提供理论基础,对预防和治疗汞中毒具有重要意义。在汞的生物转化方面,总结了动物、植物、微生物对汞的耐受与转化途径,有助于了解汞在生态系统中的迁移转化规律,以及不同生物之间的相互作用。这对于保护生态系统的稳定性和生物多样性至关重要,为环境中的汞污染生物修复途径以及汞降解菌筛选提供一定的理论支撑。
Abstract:
Mercury pollution poses severe threats to the health of human beings, and effective solutions for its remediation remain elusive. Understanding the mechanisms by which organisms tolerate and transform mercury is essential to explore the degradation of mercury pollution. This review summarizes the toxicity of mercury, as well as the mechanisms of organisms’ tolerance to and transformation of mercury, providing theoretical insights for the management of mercury pollution. The diseases caused by the toxic effects of organic mercury and inorganic mercury on human organs and the underlying mechanisms are summarized, which is of great significance for the prevention and treatment of mercury poisoning. The tolerance and transformation pathways of mercury in animals, plants, and microorganisms are summarized, which helps to understand the migration and transformation laws of mercury in the ecosystem. It is crucial for protecting the stability and biodiversity of the ecosystem, and provides certain theoretical support for the bioremediation of mercury pollution in the environment and the screening of mercury-degrading bacteria.

参考文献/References:

[1] TENG D Y, MAO K, ALI W, et al. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil[J]. RSC Advances,2020, 10(39): 23221-23232.
[2] LIN D J, HU G Z, LI H, et al. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: immobilization performance and mechanisms, effects on soil properties, and life cycle assessment[J]. Science of the Total Environment,2024, 944: 173928.
[3] MAO L L, REN W B, LIU X T, et al. Mercury contamination in the water and sediments of a typical inland river-lake basin in China: occurrence, sources, migration and risk assessment[J]. Journal of Hazardous Materials,2023, 446: 130724.
[4] GOYANNA F A A, FERNANDES M B, SILVA G B D, et al. Mercury in oceanic upper trophic level sharks and bony fishes-a systematic review[J]. Environmental Pollution, 2023, 318: 120821.
[5] FENG X B, LI P, FU X W, et al. Mercury pollution in China: implications on the implementation of the Minamata Convention[J]. Environmental Science-Processes and Impacts,2022, 24(5): 634-648.
[6] DONADT C, COOKE C A, GRAYDON J A, et al. Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed[J]. Chemosphere, 2021, 262: 128059.
[7] 李睿. 异源表达merA/merB基因对番茄汞含量的影响及在其它植物中的验证[D]. 南京:南京农业大学, 2018.
[8] ANTUNES D S A, FERRER B, GONCALVES F M, et al. Oxidative stress in methylmercury-induced cell toxicity[J]. Toxics,2018, 6(3): 47.
[9] BJORKLUND G, ANTONYAK H, POLISHCHUK A, et al. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals[J]. Archives of Toxicology,2022, 96(12): 3175-3199.
[10] YILDIZ M, ADROVIC A, GURUP A, et al. Mercury intoxication resembling pediatric rheumatic diseases: case series and literature review[J]. Rheumatology International,2020,40(8):1333-1342.
[11] GAO P C, CHU J H, CHEN X W, et al. Selenium alleviates mercury chloride-induced liver injury by regulating mitochondrial dynamics to inhibit the crosstalk between energy metabolism disorder and NF-κB/NLRP3 inflammasome-mediated inflammation[J]. Ecotoxicology and Environmental Safety,2021, 228: 113018.
[12] HAZELHOFF M H, TORRES A M. Gender differences in mercury-induced hepatotoxicity: potential mechanisms[J]. Chemosphere,2018, 202: 330-338.
[13] CORTES J, PERALTA J, DIAZ-NAVARRO R. Acute respiratory syndrome following accidental inhalation of mercury vapor[J]. Clinical Case Reports, 2018, 6(8): 1535-1537.
[14] RAHMAN Z, SINGH V P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview[J]. Environmental Monitoring and Assessment,2019, 191(7): 419.
[15] ZHAO F J, TANG Z, SONG J J, et al. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food [J]. Molecular Plant,2022, 15(1): 27-44.
[16] DU B Y, YIN R S, FU X W, et al. Use of mercury isotopes to quantify sources of human inorganic mercury exposure and metabolic processes in the human body[J]. Environment International,2021, 147: 106336.
[17] DI LELLO P, BENISON G C, VALAFAR H, et al. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system[J]. Biochemistry,2004, 43(26): 8322-8332.
[18] GRANITZER S, WIDHALM R, FORSTHUBER M, et al. Amino acid transporter LAT1 (SLC7A5) mediates Me-Hg-induced oxidative stress defense in the human placental cell line HTR-8/SVneo[J]. International Journal of Molecular Sciences,2021, 22(4): 1707.
[19] 郑小棵, 刘晓东. 中枢神经系统疾病状态下脑中L-型氨基酸转运体1功能与表达的相关研究进展[J]. 药学进展,2021, 45(11): 848-854.
[20] TAKAHASHI T, SHIMOHATA T. Vascular dysfunc-tion induced by mercury exposure[J]. International Journal of Molecular Sciences,2019, 20(10): 2435.
[21] 杨荧, 刘莉文, 李建宏. 微藻富集重金属的机制及在环境修复中的应用综述[J]. 江苏农业科学,2019, 47(21): 88-94.
[22] PODAR M, GILMOUR C C, BRANDT C C, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation[J]. Science Advances,2015, 1(9): e1500675.
[23] ZHENG J, LIANG J L, JIA P, et al. Diverse methylmercury (Me-Hg) producers and degraders inhabit acid mine drainage sediments, but few taxa correlate with Me-Hg accumulation[J]. Msystems,2023, 8(1): e0073622.
[24] 张慧敏, 李雁宾. 海洋环境汞甲基化/去甲基化研究进展[J]. 环境化学,2023, 42(3): 679-692.
[25] AN Y W, ZHANG R, YANG S, et al. Microbial mercury methylation potential in a large-scale municipal solid waste landfill, China [J]. Waste Management,2022, 145: 102-111.
[26] 何正宇, 魏锦博, 程波, 等. 地表环境汞污染的生物修复技术及展望[J]. 地球与环境,2022, 50(3): 415-425.
[27] BENISON G C, DI LELLO P, SHOKES J E, et al. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA[J]. Biochemistry,2004, 43(26): 8333-8345.
[28] LIAN P, GUO H B, RICCARDI D, et al. X-ray structure of a Hg2+ complex of mercuric reductase (MerA) and quantum mechanical/molecular mechanical study of Hg2+ transfer between the C-terminal and buried catalytic site cysteine pairs[J]. Biochemistry,2014, 53(46): 7211-7222.
[29] CHRISTAKIS C A, BARKAY T, BOYD E S. Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic archaea[J]. Frontiers in Microbiology,2021, 12: 682605.
[30] LAFRANCE-VANASE J, LEFEBVRE M, DI LELLO P, et al. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation[J]. The Journal of Biological Chemistry, 2009, 284(2): 938-944.
[31] KARRI R, DAS R, RAI R K, et al. Hg-C bond protonolysis by a functional model of bacterial enzyme organomercurial lyase MerB[J]. Chemical Communications,2020, 56(65): 9280-9283.
[32] O’CONNNO D, HOU D Y, OK Y S, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review[J]. Environment International,2019, 126: 747-761.
[33] MA M, DU H X, WANG D Y. A new perspective is required to understand the role of forest ecosystems in global mercury cycle: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 650-656.
[34] TANMAS L, ZELINOVA V. Mitochondrial complex II-derived superoxide is the primary source of mercury toxicity in barley root tip[J]. Journal of Plant Physiology, 2017, 209: 68-75.
[35] XU S, SUN B, WANG R, et al. Overexpression of a bacterial mercury transporter MerT in arabidopsis enhances mercury tolerance[J]. Biochemical and Biophysical Research Communications, 2017, 490(2): 528-534.
[36] TANG Z Y, FAN F L, DENG S P, et al. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury:a critical review[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110950.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-04-18
基金项目:环境地球化学国家重点实验室开放课题(SKLEG2022222)
作者简介:夏 丽,硕士研究生。Email: [email protected]
*通信作者:张怀东,博士,副教授。Email: [email protected]
黄建忠,博士,教授。Email: [email protected]
引文格式:夏丽,李海玥,李芹,等. 生物对汞的耐受与转化研究进展[J]. 武汉工程大学学报,2024,46(6):644-648.
更新日期/Last Update: 2024-12-30