[1] TENG D Y, MAO K, ALI W, et al. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil[J]. RSC Advances,2020, 10(39): 23221-23232.
[2] LIN D J, HU G Z, LI H, et al. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: immobilization performance and mechanisms, effects on soil properties, and life cycle assessment[J]. Science of the Total Environment,2024, 944: 173928.
[3] MAO L L, REN W B, LIU X T, et al. Mercury contamination in the water and sediments of a typical inland river-lake basin in China: occurrence, sources, migration and risk assessment[J]. Journal of Hazardous Materials,2023, 446: 130724.
[4] GOYANNA F A A, FERNANDES M B, SILVA G B D, et al. Mercury in oceanic upper trophic level sharks and bony fishes-a systematic review[J]. Environmental Pollution, 2023, 318: 120821.
[5] FENG X B, LI P, FU X W, et al. Mercury pollution in China: implications on the implementation of the Minamata Convention[J]. Environmental Science-Processes and Impacts,2022, 24(5): 634-648.
[6] DONADT C, COOKE C A, GRAYDON J A, et al. Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed[J]. Chemosphere, 2021, 262: 128059.
[7] 李睿. 异源表达merA/merB基因对番茄汞含量的影响及在其它植物中的验证[D]. 南京:南京农业大学, 2018.
[8] ANTUNES D S A, FERRER B, GONCALVES F M, et al. Oxidative stress in methylmercury-induced cell toxicity[J]. Toxics,2018, 6(3): 47.
[9] BJORKLUND G, ANTONYAK H, POLISHCHUK A, et al. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals[J]. Archives of Toxicology,2022, 96(12): 3175-3199.
[10] YILDIZ M, ADROVIC A, GURUP A, et al. Mercury intoxication resembling pediatric rheumatic diseases: case series and literature review[J]. Rheumatology International,2020,40(8):1333-1342.
[11] GAO P C, CHU J H, CHEN X W, et al. Selenium alleviates mercury chloride-induced liver injury by regulating mitochondrial dynamics to inhibit the crosstalk between energy metabolism disorder and NF-κB/NLRP3 inflammasome-mediated inflammation[J]. Ecotoxicology and Environmental Safety,2021, 228: 113018.
[12] HAZELHOFF M H, TORRES A M. Gender differences in mercury-induced hepatotoxicity: potential mechanisms[J]. Chemosphere,2018, 202: 330-338.
[13] CORTES J, PERALTA J, DIAZ-NAVARRO R. Acute respiratory syndrome following accidental inhalation of mercury vapor[J]. Clinical Case Reports, 2018, 6(8): 1535-1537.
[14] RAHMAN Z, SINGH V P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview[J]. Environmental Monitoring and Assessment,2019, 191(7): 419.
[15] ZHAO F J, TANG Z, SONG J J, et al. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food [J]. Molecular Plant,2022, 15(1): 27-44.
[16] DU B Y, YIN R S, FU X W, et al. Use of mercury isotopes to quantify sources of human inorganic mercury exposure and metabolic processes in the human body[J]. Environment International,2021, 147: 106336.
[17] DI LELLO P, BENISON G C, VALAFAR H, et al. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system[J]. Biochemistry,2004, 43(26): 8322-8332.
[18] GRANITZER S, WIDHALM R, FORSTHUBER M, et al. Amino acid transporter LAT1 (SLC7A5) mediates Me-Hg-induced oxidative stress defense in the human placental cell line HTR-8/SVneo[J]. International Journal of Molecular Sciences,2021, 22(4): 1707.
[19] 郑小棵, 刘晓东. 中枢神经系统疾病状态下脑中L-型氨基酸转运体1功能与表达的相关研究进展[J]. 药学进展,2021, 45(11): 848-854.
[20] TAKAHASHI T, SHIMOHATA T. Vascular dysfunc-tion induced by mercury exposure[J]. International Journal of Molecular Sciences,2019, 20(10): 2435.
[21] 杨荧, 刘莉文, 李建宏. 微藻富集重金属的机制及在环境修复中的应用综述[J]. 江苏农业科学,2019, 47(21): 88-94.
[22] PODAR M, GILMOUR C C, BRANDT C C, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation[J]. Science Advances,2015, 1(9): e1500675.
[23] ZHENG J, LIANG J L, JIA P, et al. Diverse methylmercury (Me-Hg) producers and degraders inhabit acid mine drainage sediments, but few taxa correlate with Me-Hg accumulation[J]. Msystems,2023, 8(1): e0073622.
[24] 张慧敏, 李雁宾. 海洋环境汞甲基化/去甲基化研究进展[J]. 环境化学,2023, 42(3): 679-692.
[25] AN Y W, ZHANG R, YANG S, et al. Microbial mercury methylation potential in a large-scale municipal solid waste landfill, China [J]. Waste Management,2022, 145: 102-111.
[26] 何正宇, 魏锦博, 程波, 等. 地表环境汞污染的生物修复技术及展望[J]. 地球与环境,2022, 50(3): 415-425.
[27] BENISON G C, DI LELLO P, SHOKES J E, et al. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA[J]. Biochemistry,2004, 43(26): 8333-8345.
[28] LIAN P, GUO H B, RICCARDI D, et al. X-ray structure of a Hg2+ complex of mercuric reductase (MerA) and quantum mechanical/molecular mechanical study of Hg2+ transfer between the C-terminal and buried catalytic site cysteine pairs[J]. Biochemistry,2014, 53(46): 7211-7222.
[29] CHRISTAKIS C A, BARKAY T, BOYD E S. Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic archaea[J]. Frontiers in Microbiology,2021, 12: 682605.
[30] LAFRANCE-VANASE J, LEFEBVRE M, DI LELLO P, et al. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation[J]. The Journal of Biological Chemistry, 2009, 284(2): 938-944.
[31] KARRI R, DAS R, RAI R K, et al. Hg-C bond protonolysis by a functional model of bacterial enzyme organomercurial lyase MerB[J]. Chemical Communications,2020, 56(65): 9280-9283.
[32] O’CONNNO D, HOU D Y, OK Y S, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review[J]. Environment International,2019, 126: 747-761.
[33] MA M, DU H X, WANG D Y. A new perspective is required to understand the role of forest ecosystems in global mercury cycle: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 650-656.
[34] TANMAS L, ZELINOVA V. Mitochondrial complex II-derived superoxide is the primary source of mercury toxicity in barley root tip[J]. Journal of Plant Physiology, 2017, 209: 68-75.
[35] XU S, SUN B, WANG R, et al. Overexpression of a bacterial mercury transporter MerT in arabidopsis enhances mercury tolerance[J]. Biochemical and Biophysical Research Communications, 2017, 490(2): 528-534.
[36] TANG Z Y, FAN F L, DENG S P, et al. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury:a critical review[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110950.