|本期目录/Table of Contents|

[1]黄玉娇,张汉泉*,余 洪,等.氮掺杂活性炭的制备及应用研究进展[J].武汉工程大学学报,2024,46(06):649-656.[doi:10.19843/j.cnki.CN42-1779/TQ.202205006]
 HUANG Yujiao,ZHANG Hanquan*,YU Hong,et al.Research progress in preparation and application of nitrogen-doped activated carbon[J].Journal of Wuhan Institute of Technology,2024,46(06):649-656.[doi:10.19843/j.cnki.CN42-1779/TQ.202205006]
点击复制

氮掺杂活性炭的制备及应用研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
649-656
栏目:
生物与环境工程
出版日期:
2024-12-31

文章信息/Info

Title:
Research progress in preparation and application of nitrogen-doped activated carbon
文章编号:
1674 - 2869(2024)06 - 0649 - 08
作者:
武汉工程大学资源与安全工程学院,湖北 武汉 430074
Author(s):
School of Resource & Safety Engineering,Wuhan Institute of Technology,Wuhan 430074,China
关键词:
Keywords:
分类号:
TQ041+.8
DOI:
10.19843/j.cnki.CN42-1779/TQ.202205006
文献标志码:
A
摘要:
活性炭物化性质稳定,孔结构发达,常用作吸附介质。随着工业技术的发展,通过改性活性炭的表面化学性质拓宽其应用领域成为研究热点。近年来,活性炭表面掺杂氮等杂原子的应用得到了广泛研究,通过简要论述氮掺杂活性炭的制备原理和方法,以及不同原料与制备方法对活性炭物理结构、表面化学性质的影响;详细分析了氮掺杂活性炭在储能、吸附以及催化氧化等领域的应用进展;最后对氮掺杂活性炭掺杂过程定向调控、应用机理等方面进行了展望,为后续氮掺杂活性炭的研究提供一定的理论参考。
Abstract:
Activated carbon is commonly used as an adsorbing medium due to its stable physicochemical properties and well-developed pore structure. With the advancement of industrial technology, modifying the surface chemical properties of activated carbon to broaden its application scope has become a research focus. In recent years, the application of nitrogen-doped activated carbon has received extensive attention. This reriew briefly discusses the preparation principles and methods of nitrogen-doped activated carbon, as well as the impact of different raw materials and preparation methods on the physical structure and surface chemical properties of activated carbon. It also provides a detailed analysis of the application progress of nitrogen-doped activated carbon in the fields of energy storage, adsorption, and catalytic oxidation. The future research directions of nitrogen-doped activated carbon, such as directional regulation during the doping process and application mechanisms, are proposed, providing a theoretical reference for subsequent studies.

参考文献/References:

[1] 刘超. 氮掺杂多孔碳材料的合成及其应用研究[D]. 天津:天津大学,2014.
[2] 张德懿,雷龙艳,尚永花. 氮掺杂对碳材料性能的影响研究进展[J]. 化工进展,2016,35(3):831-836.
[3] 郝晓东. 基于生物质制备杂原子掺杂多孔碳材料及超级电容器性能研究[D]. 南京:南京航空航天大学,2018.
[4] 王倩. MOFs基多孔炭材料的制备及其电化学性能研究[D]. 兰州:兰州理工大学,2020.
[5] WOOD K N, O’HAYRE R, PYLYPENKO S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications[J]. Energy & Environmental Science, 2014, 7(4): 1212-1249.
[6] 孙利. 氮掺杂多孔炭的制备及其电化学性能[D]. 大连:大连理工大学,2014.
[7] 曹伟然,李玉龙,周颖,等. 硫掺杂炭材料的制备与应用[J]. 化工进展,2016,35(12):3727-3734.
[8] 乐丹. 氮掺杂沥青基多孔碳材料的结构调控与电化学性能研究[D]. 长沙:湖南大学,2019.
[9] 杨勇,王言,蓝国钧. 氮掺杂多孔炭材料的制备及在多相催化中的应用[J]. 化学通报,2016,79(10): 905-913.
[10] HAN J, XU G, DING B. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2:5352-5357.
[11] 刘云. 氮掺杂碳材料的制备及在超级电容器中的应用研究[D]. 无锡:江南大学,2019.
[12] ZHAO L,BACCILE N,GROSS S, et al. Sustainalbe nitrogen-doped carbonaceous materials from biomass derivatives[J]. Carbon, 2010, 48: 3778-3787.
[13] FALCONS C, SEVILLA M, WHITE R J, et al. Renewable nitrogcn-doped hydrothermal carbons derived from microalgae[J]. ChemSusChem, 2012, 5: 1834-1840.
[14] 袁梦莹. 生物质基超级电容器电极材料的制备与性能研究[D]. 济南:齐鲁工业大学,2019.
[15] 魏庆玲. 生物质基电容炭的制备及其电化学性能研究[D]. 长春:吉林大学,2020.
[16] ZHANG X H, ZHAN H, YIN X L, et al. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass[J]. Journal of Fuel Chemistry and Technology,2016,44(12):1464-1472.
[17] YAN J, WEI T, QIAO W M, et al. A high-performance carbon derived from polyaniline for supercapacitors[J]. Electrochemistry Communica-tions, 2010, 12(10): 1279-1282.
[18] 杨旋,郑新宇,吕建华,等. 碱/尿素溶解体系制备氮掺杂活性炭及其电化学性能研究[J]. 林产化学与工业,2021,41(2):10-16.
[19] 蔡宇燕,吴春杰,周丹红,等. 高性能超级电容器用药渣基氮掺杂分级多孔炭的制备[J]. 山东化工,2021,50(1):11-15.
[20] LIU B, ZHOU X H, CHEN H B, et al. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance[J]. Electrochimica Acta, 2016, 208: 55-63.
[21] WEI T Y, WEI X L, YONG G, et al. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors[J]. Electrochimica Acta, 2015, 169: 186-194.
[22] 唐诚贵. 氮掺杂多孔碳材料的制备及其在超级电容器中的应用[D]. 湘潭:湘潭大学,2017.
[23] LIU Y M, AN Z, WU M, et al. Peony pollen derived nitrogen-doped activated carbon for supercapacitor application[J]. Chinese Chemical Letters, 2020, 31(6): 1644-1647.
[24] 余正发,王旭珍,刘宁. N 掺杂多孔碳材料研究进展[J]. 化工进展,2013,32(4):824-831.
[25] 翟作昭,许跃龙,任斌,等. 氮掺杂多孔炭材料的研究进展[J]. 炭素技术,2021,40(2):6-11.
[26] 焦帅,杨磊,武婷婷,等. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报,2021,72(5):2869-2877.
[27] LEI Z B, DAN B, ZHAO X S. Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping[J]. Microporous & Mesoporous Materials, 2012, 147(1): 86-93.
[28] ZHANG P F, GONG Y T, WEI Z Z, et al. Updating biomass into functional carbon material in ionothermal manner[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12515-12522.
[29] GRAGLIA M, PAMPEL J, HANTKE T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano, 2016, 10(4): 4364-4371.
[30] LI K X, CHEN W, YANG H P, et al. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials[J]. Bioresource Technology, 2019, 280: 260-268.
[31] HORIKAWA T, SAKAO N, SEKIDA T, et al. Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption[J]. Carbon, 2012, 50(5): 1833-1842.
[32] 秦晓伟,张国杰,李晟,等. 非金属氮掺杂活性炭催化剂制备及其催化CH4-CO2重整反应[J]. 化工进展,2021,40(6):3203-3214.
[33] 任猛. 含氮多孔炭材料的制备及其CO2吸附和电化学性能研究[D]. 湘潭:湘潭大学,2019.
[34] 李云倩. 功能化多孔碳材料的制备及其应用研究[D]. 石家庄:河北科技大学,2017.
[35] FUJIKI J, YOGO K. The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping[J]. Chemical Communications, 2016, 52(1): 186-189.
[36] CHEN T, DENG S B, WANG B, et al. CO2 adsorption on crab shell derived activated carbons: contribution of micropores and -containing groups[J]. RSC Advances, 2015, 5(60): 48323-48330.
[37] CHEN L C, PENG P Y, LIN L F, et al. Facile preparation of nitrogen-doped activated carbon for carbon dioxide adsorption[J]. Aerosol and Air Quality Research, 2014, 14(3): 916-927.
[38] ALABADI A A, ABBOOD H A, DAWOOD A S, et al. Ultrahigh-CO2 adsorption capacity and CO2/N2 selectivity by nitrogen-doped porous activated carbon monolith[J]. Bulletin of the Chemical Society of Japan, 2020, 93(3): 421-426.
[39] SHAO L S, LIU M Q, SANG Y F, et al. Nitrogen-doped ultrahigh microporous carbons derived from two nitrogen-containing post-cross-linked polymers for efficient CO2 capture[J]. Journal of Chemical & Engineering Data, 2020, 65(4): 2238-2250.
[40] XIA Y, MOKAYA R, WALKER G S, et al. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite[J]. Advanced Energy Materials, 2011, 1(4): 678-683.
[41] 李光耀. 氮掺杂活性炭制备及其超级电容器性能研究[D]. 鞍山:辽宁科技大学,2014.
[42] 禹兴海,罗齐良,潘剑,等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报,2019,70(9):3590-3600.
[43] SUN F, GAO J H, PI X X, et al. High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity[J]. Journal of Power Sources, 2017, 337: 189-196.
[44] LIU J J, DENG Y F, LI X H, et al. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1): 177-187.
[45] ZHOU J, ZHANG Z S, XING W, et al. Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance[J]. Electrochimica Acta, 2015, 153: 68-75.
[46] LI J, LIU K, GAO X, et al. Oxygen-and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24622-24628.
[47] DU J, CHEN A B, ZHANG Y, et al. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors[J]. Journal of Materials Science & Technology, 2020, 58: 197-204.
[48] HAN X L, JIANG H X, ZHOU Y, et al. A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria[J]. Journal of Alloys and Compounds, 2018, 744: 544-551.
[49] GAO F, QU J Y, ZHAO Z B, et al. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J]. Electrochimica Acta, 2016, 190: 1134-1141.
[50] 郭晓娜. 氮掺杂活性炭材料的制备及性能研究[D]. 贵阳:贵州大学,2016.
[51] 王宜望. 活性炭碱性的来源、增强及其催化双氧水分解的研究[D]. 南京: 南京林业大学,2015.
[52] 周磊,陶伟,崔耀,等. 铋/氮掺杂活性炭的制备及其催化还原对硝基苯酚的性能[J]. 化工技术与开发,2017,46(11):5-7,18.
[53] XU Z, ZHOU S Z, ZHU M Y. Ni catalyst supported on nitrogen-doped activated carbon for selective hydrogenation of acetylene with high concentration[J]. Catalysis Communications, 2021, 149: 106241.
[54] 张曼. 杂原子掺杂生物质活性炭材料的制备及其超级电容器和氧还原性能的研究[D]. 北京:北京化工大学,2017.
[55] FU P, ZHOU L H, SUN L H, et al. Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. RSC Advances, 2017, 7(22): 13383-13389.
[56] MA S W, LI H, ZHANG G, et al. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Frontiers of Environmental Science & Engineering, 2021, 15: 1-11.
[57] YAO M Q, LIANG W Y, CHEN H L, et al. Efficient hydrogen production from formic acid using nitrogen-doped activated carbon supported Pd[J]. Catalysis Letters, 2020, 150: 2377-2384.
[58] VILLORA-PICO’ J J, CAMPELLO-GOMEZ I, SERRANO-RUIZ J C, et al. Hydrogenation of 4-nitrochlorobenzene catalysed by cobalt nanoparticles supported on nitrogen-doped activated carbon[J]. Catalysis Science & Technology, 2021, 11(11): 3845-3854.
[59] WU X Y, HE P J, WANG X G, et al. Zinc acetate supported on N-doped activated carbon as catalysts for acetylene acetoxylation[J]. Chemical Engineering Journal, 2017, 309: 172-177.
[60] FUJITA S, ASANO S, ARAI M. Nitrobenzene-assisted reduction of phenylacetylene with hydrazine over nitrogen-doped metal-free activated carbon catalyst: significance of interactions among substrates and catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 181-184.
[61] HU Y H, JIANG G C, XU G Q, et al. Hydrogenolysis of lignin model compounds into aromatics with bimetallic Ru-Ni supported onto nitrogen-doped activated carbon catalyst[J]. Molecular Catalysis, 2018, 445: 316-326.
[62] 王琼. 基于碱脲体系掺杂活性炭的制备及其电化学性能研究[D]. 福州:福建农林大学,2021.
[63] 陈嘉炼. 硒、氮掺杂超高比表面积活性炭用于超级电容器的性能研究[D]. 福州:福建师范大学,2022.

相似文献/References:

[1]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
 ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(06):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[2]江学良,郜艳荣,张玉婷,等.微波辐照法制备氮掺杂二氧化钛空心球及其光催化性能[J].武汉工程大学学报,2018,40(06):627.[doi:10. 3969/j. issn. 1674?2869. 2018. 06. 008]
 JIANG Xueliang,GAO Yanrong,ZHANG Yuting,et al.Preparation of Nitrogen Doped TiO2 Hollow Spheres by Microwave Irradiation and Its Photocatalysis Property[J].Journal of Wuhan Institute of Technology,2018,40(06):627.[doi:10. 3969/j. issn. 1674?2869. 2018. 06. 008]
[3]柯 源,胡 稳,方 晗,等.高氮含量多孔碳的制备、热处理及氧还原性能[J].武汉工程大学学报,2021,43(06):626.[doi:10.19843/j.cnki.CN42-1779/TQ.202011019]
 KE Yuan,HU Wen,FANG Han,et al.Preparation,Heat-Treatment and Oxygen Reduction Performance of Porous Carbon with High Nitrogen Content[J].Journal of Wuhan Institute of Technology,2021,43(06):626.[doi:10.19843/j.cnki.CN42-1779/TQ.202011019]
[4]刘 璐,胡宇琴,刘钰铃,等.钠盐改性的N掺杂多孔碳的制备及其电容性能[J].武汉工程大学学报,2023,45(06):647.[doi:10.19843/j.cnki.CN42-1779/TQ.202208019]
 LIU Lu,HU Yuqin,LIU Yuling,et al.Fabrication of N-Doped Porous Carbon Modified by Sodium Salt andInvestigation on Its Capacitive Properties[J].Journal of Wuhan Institute of Technology,2023,45(06):647.[doi:10.19843/j.cnki.CN42-1779/TQ.202208019]

备注/Memo

备注/Memo:
收稿日期:2022-05-03
基金项目:湖北省教育厅科学技术研究项目(B2017055);武汉工程大学校长基金(XZJJ2020158);武汉工程大学第十二届研究生教育创新基金(CX2020356)
作者简介:黄玉娇,硕士研究生。Email: [email protected]
*通信作者:张汉泉,博士,教授。Email:[email protected]
谢 蕾,博士研究生。E-mail: [email protected]
引文格式:黄玉娇,张汉泉,余洪,等. 氮掺杂活性炭的制备及应用研究进展[J]. 武汉工程大学学报,2024,46(6):649-656.
更新日期/Last Update: 2024-12-30