|本期目录/Table of Contents|

[1]李景乾,菅晓霞*,万文轩.基于冷金属过渡焊接的铝合金增材制造工艺研究[J].武汉工程大学学报,2024,46(06):657-662.[doi:10.19843/j.cnki.CN42-1779/TQ.202207014]
 LI Jingqian,JIAN Xiaoxia*,WAN Wenxuan.Aluminum alloy additive manufacturing process based on cold metal transfer welding technology[J].Journal of Wuhan Institute of Technology,2024,46(06):657-662.[doi:10.19843/j.cnki.CN42-1779/TQ.202207014]
点击复制

基于冷金属过渡焊接的铝合金增材制造工艺研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
657-662
栏目:
机电与信息工程
出版日期:
2024-12-31

文章信息/Info

Title:
Aluminum alloy additive manufacturing process based on cold metal transfer welding technology
文章编号:
1674 - 2869(2024)06 - 0657 - 06
作者:
1. 武汉工程大学机电工程学院,湖北 武汉 430205;
2. 智能焊接装备与软件工程技术湖北省研究中心,湖北 武汉 430205;
3. 中核四0四有限公司,甘肃 嘉峪关 735100
Author(s):
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Hubei Research Center of Intelligent Welding Equipment and Software Engineering Technology, Wuhan 430205, China;
3. China National Nuclear Industry Corporation 404, Jiayuguan 735100, China
关键词:
Keywords:
分类号:
TG444
DOI:
10.19843/j.cnki.CN42-1779/TQ.202207014
文献标志码:
A
摘要:
5183铝合金具有优异的比强度、比刚度及耐腐蚀性能,在航空航天及交通运输领域应用广泛。使用增材制造技术加工5183铝合金构件在缩短周期、降低成本等方面具有显著优势,但是目前采用丝弧增材工艺制造的铝合金具有表面精度低、力学性能不佳等问题。本文采用基于冷金属过渡焊接的工艺制造5183铝合金薄壁件,研究工艺参数对增材形貌及力学性能的影响规律。结果表明,当焊接速度为7 mm/s、焊接电流为110 A时,焊缝表面光滑,成形系数 λ 接近1,是所选范围内最优的焊接工艺参数。沉积态铝合金中下部区域层内晶粒组织以细小的等轴晶为主,而层间晶粒有枝晶破碎和晶粒粗化现象。所选取试样在水平方向和竖直方向上的平均抗拉强度分别为245.2、211.7 MPa,各向异性特征不明显,平均断后伸长率分别为19.5%和10.3%,高度方向塑性较差。试样拉伸断口位于层间结合区域,在气孔侧壁上分布有很多细小的微裂纹,证明气孔与裂纹降低了铝合金承载外部载荷的能力,同时也增加了构件的开裂倾向。
Abstract:
The 5183 aluminum alloy exhibits exceptional specific strength, specific stiffness, and corrosion resistance, making it a widely applied material in aerospace and transportation industries. Utilizing additive manufacturing technology for processing 5183 aluminum alloy components offers notable advantages in terms of production cycle and cost reduction. However, current aluminum alloys produced using the wire arc additive processes suffer from issues such as low surface accuracy and poor mechanical properties. This study focuses on the fabrication of thin-walled 5183 aluminum alloy components using cold metal transfer additive manufacturing. Through experimentation, optimal welding parameters were determined, to investigate their influence on morphology and mechanical performance of manufactured additives. Findings reveal that at a welding speed of 7 mm/s and a welding current of 110 A, the weld seam exhibits a smooth surface, with a forming coefficient λ close to 1, representing the optimal welding parameters within the specified range. Microstructural analysis indicates that the middle and lower regions of the deposited 5183 aluminum alloy predominantly feature fine equiaxed grains, while interlayer grains display varying complexities in size, type, and orientation, accompanied by dendrite fragmentation and grain coarsening phenomena. The average tensile strength of the selected samples in the horizontal and vertical directions is 245.2 and 211.7 MPa respectively, with fracture elongation rates of 19.5% and 10.3%, respectively, and the plasticity is relatively poor in the vertical direction. Tensile fractures occur at interlaminar bonding areas, revealing numerous fine microcracks along the sidewall of the pores, which suggests that pores and cracks compromise the load-bearing capacity of the aluminum alloy, exacerbating the propensity for cracking of the components.

参考文献/References:

[1] HAI-OU Z, WANG R, LIANG L Y, et al. HDMR technology for the aircraft metal part[J]. Rapid Prototyping Journal,2016,22(6):857-863.
[2] YU Z L,YUAN T, XU M, et al. Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy fabricated by wire+arc additive manufacturing[J].Journal of Manufacturing Processes,2021,62:430-439.
[3] 刘一搏,孙清洁,姜云禄,等.基于冷金属过渡技术快速成形工艺[J]. 焊接学报,2014,35(7):1-4.
[4] 从保强,丁佳洛. CMT工艺对 Al-Cu 合金电弧增材制造气孔的影响[J]. 稀有金属材料与工程,2014,43(12):3149-3153.
[5] 柏久阳.2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨:哈尔滨工业大学,2019.
[6] 王元良,屈金山,晏传鹏,等. 铝合金焊接性能及焊接接头性能[J].中国有色金属学报,1997,7(1):69-74.
[7] 熊进辉,李士凯,耿永亮,等. 电子束熔丝沉积快速制造技术研究现状[J]. 电焊机,2016,46(2):7-11.
[8] 张永,周天瑞,徐春晖.熔融沉积快速成型工艺成型精度的影响因素及对策[J]. 南昌大学学报(工科版) ,2007,29(3):252-255.
[9] CONG B Q, DING J L,WILLIAMS S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3% Cu alloy [J].International Journal of Advanced Manufacturing Technology,2015,76 (9/10/11/12) :1593-1606.
[10] 王会霞,王松涛,王天顺,等.CMT电弧特性对5A56铝合金增材制造构件组织与性能的影响[J].电焊机,2021,51(8):55-63.
[11] 吉华,邓运来,徐红勇,等. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报,2019,55(3): 376-388.
[12] FENG J C, ZHANG H T, HE P. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding[J].Materials and Design,2009,30(5):1850-1852.
[13] 杨修荣.超薄板的MIG/MAG焊——CMT冷金属过渡技术[J].电焊机,2006,36(6):5-7.
[14] 姜云禄.基于冷金属过渡技术的铝合金快速成形技术及工艺研究[D].哈尔滨:哈尔滨工业大学,2014.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-07-10
基金项目:国家自然科学基金(51705133)
作者简介:李景乾,硕士研究生。Email:[email protected]
*通信作者:菅晓霞,博士,副教授。 Email:[email protected]
引文格式:李景乾,菅晓霞,万文轩. 基于冷金属过渡焊接的铝合金增材制造工艺研究[J]. 武汉工程大学学报,2024,46(6):657-662.
更新日期/Last Update: 2024-12-31