|本期目录/Table of Contents|

[1]尹博今,殷 勇*,魏轩宇,等.量子Lenoir循环有效功率的优化[J].武汉工程大学学报,2024,46(06):671-675.[doi:10.19843/j.cnki.CN42-1779/TQ.202307002]
 YIN Bojin,YIN Yong*,WEI Xuanyu,et al.Optimization of effective power of quantum Lenoir cycle[J].Journal of Wuhan Institute of Technology,2024,46(06):671-675.[doi:10.19843/j.cnki.CN42-1779/TQ.202307002]
点击复制

量子Lenoir循环有效功率的优化
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
671-675
栏目:
机电与信息工程
出版日期:
2024-12-31

文章信息/Info

Title:
Optimization of effective power of quantum Lenoir cycle
文章编号:
1674 - 2869(2024)06 - 0671 - 05
作者:
1. 武汉工程大学光电信息与能源工程学院、数理学院,湖北 武汉 430205;
2. 武汉工程大学热科学与动力工程研究所,湖北 武汉 430205
Author(s):
1. School of Optical Information and Energy Engineering, School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China;
2. Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
Keywords:
分类号:
TK124
DOI:
10.19843/j.cnki.CN42-1779/TQ.202307002
文献标志码:
A
摘要:
应用有限时间热力学和量子热力学理论,建立量子Lenoir热机循环模型,工质为囚禁于一维无限深势阱中的n个无相互作用的费米子。导出了循环的功率、无量纲功率、效率、有效功率的表达式,研究了势阱宽度比与热漏系数对无量纲功率、效率以及有效功率的影响。结果表明:热漏系数对无量纲功率没有影响,而效率和有效功率随热漏系数的增大而减小。在有效功率达到最大值时的效率,相较于无量纲功率最大时的效率提升了45.8%,但此时的无量纲功率却仅比最高值下降了13.6%。因此,以有效功率为优化目标时,系统可以在牺牲部分功率的情况下获得更高的效率,使循环的综合性能更优,研究结果为Lenoir热机的优化提供了一种新的设计方案。
Abstract:
Based on the theory of finite time thermodynamics and quantum thermodynamics, a quantum Lenoir heat engine cycle model was established, and the working medium was n non-interacting fermions trapped in a one-dimensional infinite potential well. The expressions for power, dimensionless power, efficiency, and effective power of the cycle were derived. The study investigated the impact of the potential well width ratio and thermal leakage coefficient on dimensionless power, efficiency, and effective power. Results indicate that the thermal leakage coefficient does not affect dimensionless power, whereas efficiency and effective power decrease as the thermal leakage coefficient increases. At the point of maximum effective power, efficiency increases by 45.8% compared to the maximum dimensionless power, while the dimensionless power only decreases by 13.6%. Consequently, optimization based on effective power demonstrates that the system attains higher efficiency by sacrificing some power, achieving the optimal performance of the cycle. The research findings offer a novel design approach for optimizing the Lenoir heat engine.

参考文献/References:

[1] SCOVIL H E D,SCHULZ-DUBOIS E O. Three-level masers as heat engines[J]. Physical Review Letters, 1959, 2(6):262-263.
[2] AHLBORN B, BARNARD A J. Efficiency reduction of heat engines due to power extraction[J]. American Journal of Physics, 1990, 58(5):498-499.
[3] GUTKOWICZ-KRUSIN D, PROCACCIA I, ROSS J. On the efficiency of rate processes. power and efficiency of heat engines[J]. The Journal of Chemical Physics, 1978, 69(9):3898-3906.
[4] REBHAN E, AHLBORN B. Frequency-dependent performance of a nonideal Carnot engine[J]. American Journal of Physics, 1987, 55(5):423-428.
[5] 谢心怡,?陈林根,?殷勇,?等.?不可逆量子矩形循环的功率、效率和有效功率分析与优化[J].?节能,2023,?42(9):34-38.
[6] XU H G, JIN J S,NETO G D M, et? al.? Universal quantum Otto heat machine based on the Dicke model[J].? Physical Review E,? 2024, 109(1):?014122.
[7] SALAMON P, NITZAN A. Finite time optimizations of a Newton’s law Carnot cycle[J]. The Journal of Chemical Physics, 1981, 74(6):3546-3560.
[8] 陈林根, 孙丰瑞, 陈文振. 卡诺热机的最佳利润与效率间的关系[J]. 热能动力工程, 1991, 6(4):237-241.
[9] 孙丰瑞, 陈林根, 陈文振. 二热源机的全息热效率与利润率谱[J]. 内燃机学报, 1991, 9(3):286-287.
[10] 陈林根, 孙丰瑞, 陈文振. 两源热机有限时间?经济性能界限和优化准则[J]. 科学通报, 1991, 36(3):233-235.
[11] RUSANOV A I. Advances in thermodynamics of solid surfaces[J]. Pure & Applied Chemistry, 1989, 61(11):1945-1948.
[12] BERRY R S, SALAMON P, HEAL G. On a relation between economic and thermodynamic optima[J]. Resources and Energy, 1978, 1(2):125-137.
[13] TSATSARONIS G. Thermoeconomic analysis and optimization of energy systems[J]. Progress in Energy and Combustion Science, 1993, 19(3):227-257.
[14] 严子浚. ηλΡ最大时卡诺热机的η和Ρ[J]. 厦门大学学报(自然科学版), 1986, 25(3):279-286.
[15] 丁佳, 殷勇, 陈林根, 等. 量子狄塞尔热泵循环性能分析[J]. 武汉工程大学学报, 2022, 44(1):92-96.
[16] FAHRIZA A, SUTANTYO T E P, ABDULLAH Z. Optimizations of multilevel quantum engine with N noninteracting fermions based on Lenoir cycle[J]. The European Physical Journal Plus, 2022, 137:1030.
[17] 龚舒文, 陈林根, 孙丰瑞. 包含多变过程的内可逆Lenoir循环性能分析与优化[J]. 节能, 2013, 32(7):22-26,38.
[18] SAPUTRA Y D. Quantum Lenoir engine with a multiple-eigenstates particle in 1D potential box[J]. Journal of Physics: Conference Series, 2021,1726(1):012016.
[19] 刘存,殷勇,杨晗,等. 不可逆量子斯特林热泵循环性能分析与优化[J]. 武汉工程大学学报, 2021, 43(2):232-236.
[20] E Q, WU F, CHEN L G, et al. Thermodynamic optimization for a quantum thermoacoustic refrigeration micro-cycle[J]. Journal of Central South University,2020,27(9):2754-2762.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-07-01
基金项目:武汉工程大学科学基金(19QD22);武汉工程大学第十三届研究生教育创新基金(CX2022466)
作者简介:尹博今,硕士研究生。Email:[email protected]
*通信作者:殷 勇,博士,副教授。Email:[email protected]
引文格式:尹博今, 殷勇, 魏轩宇, 等. 量子Lenoir循环有效功率优化[J]. 武汉工程大学学报,2024,46(6):671-675.
更新日期/Last Update: 2024-12-31