|本期目录/Table of Contents|

[1]林 纬,邱心缘,汪 威*,等.底流口直径对管柱式气液分离器流动与分离特性影响研究[J].武汉工程大学学报,2024,46(06):681-686.[doi:10.19843/j.cnki.CN42-1779/TQ.202401025]
 LIN Wei,QIU Xinyuan,WANG Wei*,et al.Influence of the bottom outlet diameter of gas-liquid cylindrical?cyclone on its separation performance[J].Journal of Wuhan Institute of Technology,2024,46(06):681-686.[doi:10.19843/j.cnki.CN42-1779/TQ.202401025]
点击复制

底流口直径对管柱式气液分离器流动与分离特性影响研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
681-686
栏目:
机电与信息工程
出版日期:
2024-12-31

文章信息/Info

Title:
Influence of the bottom outlet diameter of gas-liquid cylindrical?cyclone on its separation performance
文章编号:
1674 - 2869(2024)06 - 0681 - 06
作者:
1. 武汉工程大学机电工程学院,湖北 武汉 430205;
2. 化工装备强化与本质安全湖北省重点实验室,湖北 武汉 430205
Author(s):
1. School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China;
2. Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety,Wuhan 430205,China
关键词:
Keywords:
分类号:
TE32
DOI:
10.19843/j.cnki.CN42-1779/TQ.202401025
文献标志码:
A
摘要:
为提高管柱式气液分离器(GLCC)的分离效率,在经典气液分离器基础结构上改变GLCC的结构参数以及工况,并采用Fluent软件,基于欧拉多相流模型和Multi-Fluid VOF模型,通过自定义函数对分离器内流场进行数值模拟,监控底流口液相质量流率,分析在不同入口气液相流量和底流口直径下GLCC分离效率的变化规律。研究结果表明:减小底流口直径有利于提升GLCC的分离效率,其中底流口直径为18 mm时分离效率较高,且都在80%以上;底流口液相质量流率的振荡具有周期性变化且不同底流口直径的气液两相流型的周期性流动行为与底流口液相质量流率变化密切相关,因此可以通过监测底流口液相质量流率实现对GLCC中气液两相流态的动态捕捉,进而提高GLCC分离效率。
Abstract:
In order to enhance the separation performance of gas-liquid cylindrical cyclone(GLCC), structural parameters and operating conditions of the classic gas-liquid separator were modified. Using the software Fluent, based on the Eulerian multiphase flow model and Multi-Fluid VOF model, numerical simulations of the flow field within the separator were conducted through custom functions. The liquid phase mass flow rate at the bottom outlet was monitored to analyze the variation of GLCC separation efficiency under different inlet gas-liquid phase flow rates and bottom outlet diameters. Research findings indicate that reducing the bottom outlet diameter is beneficial for improving the separation efficiency of GLCC. When the bottom outlet diameter is 18 mm, the separation efficiency is higher, consistently exceeding 80%. The oscillation of the liquid phase mass flow rate at the bottom outlet exhibits periodic changes, and the periodic flow behavior of the gas-liquid two-phase flow with different bottom outlet diameters is closely related to the variation of the liquid phase mass flow rate at the bottom outlet. Therefore, by monitoring the liquid phase mass flow rate at the bottom outlet, dynamic capturing of the gas-liquid two-phase flow regime in GLCC can be achieved, thereby enhancing the separation efficiency of GLCC.

参考文献/References:

[1] 王懿,陈建义,段梦兰,等. 水下生产系统及工程[M].青岛:中国石油大学出版社,2017:65-66.
[2] 陈家庆.海洋油气开发中的水下生产系统(一)[J].石油机械,2007,35(5): 54-58.
[3] 寇杰.柱状气液旋流分离器的研究现状及应用前景[J].石油机械,2006,34(4): 71-73.
[4] ARPANDI I A, JOSHI A R, SHOHAM O, et al. Hydrodynamics of two-phase flow in gas-liquid cylindrical cyclone separators[J]. SPE Journal,1996,1(4):427-436.
[5] CHIRINOS W A, GOMEZ L E, WANG S B,et al. Liquid carry-over in gas-liquid cylindrical cyclone compact separators[J]. SPE Journal,2000,5(3):259-267.
[6] GOMEZ L,MOHAN R,SHOHAM O. Swirling gas-liquid two-phase flow-experiment and modeling part I:swirling flow field[J]. Journal of Fluids Engineering,2004,126(6): 935-942.
[7] 杨蕊.脉动条件下气液旋流分离器流场特性及分离性能研究[D].大庆:东北石油大学,2022.
[8] 王婉琳.气液旋流分离器结构改进和性能模拟[J].科技传播,2022,14(10):109-113.
[9] 路远.深海GLCC分离器入口喷嘴结构改进实验研究[D].北京:中国石油大学(北京),2018.
[10] 许如敏,陈建义,王婉琳,等. 深海管柱式气液分离器结构优化模拟研究[J]. 中国海洋平台,2016,31(2):55-61.
[11] YANG L L,ZHANG J,MA Y,et al. Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone [J]. Chemical Engineering Science,2020,214:115362.
[12] YUE T,CHEN J Y,SONG J F,et al. Experimental and numerical study of upper swirling liquid film (USLF) among gas-liquid cylindrical cyclones (GLCC)[J]. Chemical Engineering Journal,2019,358: 806-820.
[13] 冯进,张慢来,刘孝光,等. 气-液旋流器内部流场的CFD模拟[J].化工机械,2005(6): 358-361.
[14] 范大为. 气-液分离水力旋流器理论与试验研究[D]. 大庆:大庆石油学院,2009
[15] 王亚安,陈建义,叶松,等.管柱式气-液分离器溢流压力降计算模型[J].石油学报(石油加工),2021,37(1):88-99.
[16] 岳题 . 管柱式气液分离器(GLCC)上部筒体气液流动行为及分离机理研究[D].北京:中国石油大学(北京),2019.
[17] WANG Y A,CHEN J Y,YANG Y,et al. Experimental and numerical performance study of a downward dual-inlet gas-liquid cylindrical cyclone (GLCC)[J]. Chemical Engineering Science,2021,238: 116595.
[18] HAN Q,ZHANG C,XU B,et al. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure[J]. AIP Conference Proceedings,2013,1547(1): 350-361.
[19] 李莹. 柱状旋流分离器结构与油气分离效率研究[D].北京:中国石油大学(北京),2018.
[20] 许承炜.管柱式气液分离器分离性能实验研究[D].北京:中国石油大学(北京),2017.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-01-29
基金项目:武汉工程大学校级基金(K2021020);2020年湖北省重点研发项目(2020BAB30)
作者简介:林 纬,博士,副教授。Email: [email protected]
*通信作者:汪 威,博士,副教授。Email: [email protected]
引文格式:林纬,邱心缘,汪威,等. 底流口直径对管柱式气液分离器流动与分离特性影响研究[J]. 武汉工程大学学报,2024,46(6):681-686.


更新日期/Last Update: 2024-12-31