|本期目录/Table of Contents|

[1]楚晨晖,孟 亮,朱瑶瑶.基于标准建筑群模型的行人高度风环境数值模拟研究[J].武汉工程大学学报,2024,46(06):699-705.[doi:10.19843/j.cnki.CN42-1779/TQ.202303024]
 CHU Chenhui,MENG Liang,ZHU Yaoyao.Numerical simulation of pedestrian-level wind environment based on standard urban building model[J].Journal of Wuhan Institute of Technology,2024,46(06):699-705.[doi:10.19843/j.cnki.CN42-1779/TQ.202303024]
点击复制

基于标准建筑群模型的行人高度风环境数值模拟研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年06期
页码:
699-705
栏目:
资源与土木工程
出版日期:
2024-12-31

文章信息/Info

Title:
Numerical simulation of pedestrian-level wind environment based on standard urban building model
文章编号:
1674 - 2869(2024)06 - 0699 - 07
作者:
1. 无锡环境科学与工程研究中心,江苏 无锡 214100;
2. 无锡城市职业技术学院建筑与环境工程学院,江苏 无锡 214100
Author(s):
1. Wuxi Environmental Science & Engineering Research Center,Wuxi 214100,China;
2. School of Architecture and Environmental Engineering,Wuxi City College of Vocational Technology,Wuxi 214100,China
关键词:
Keywords:
分类号:
P425. 6;TU984
DOI:
10.19843/j.cnki.CN42-1779/TQ.202303024
文献标志码:
A
摘要:
行人高度风环境是人居环境的重要考察指标。为研究建筑群的不同布局形式对行人高度(Z=1.5 m)风环境的影响,采用计算流体力学(CFD)技术对某标准建筑群模型进行了风环境数值模拟。首先,进行了网格无关性检验和模拟准确性检验,确定了可靠的网格方案和模拟条件。然后,通过数值模拟,得到并总结了标准建筑群模型的中心区域范围内的平均风速场、迹线场分布规律。接着改变建筑群模型的建筑密度、相对高度以及错落度等参数,研究不同条件因素对行人高度风环境的影响效应。研究结果表明:中心区域平均风速较来流风速有所增大,且存在若干旋涡区。在中心建筑前部、侧后方存在风速极值区域。中心区域平均风速对建筑密度的变化不敏感,但当建筑密度低于0.55时,风速快速衰减。周围建筑与中心建筑的高度比对中心区域平均风速影响显著,平均风速随高度比增加而降低,当高度比达0.5左右时,存在风速突降点。中心区域平均风速随错落度增加近似线性降低,不同错落形式的风环境差异明显。
Abstract:
Pedestrian-level wind environment is an important indicator of human settlements. To study the influence of different layouts of buildings on the wind environment at pedestrian height (Z = 1.5 m),computational fluid dynamics was used to simulate the wind environment of a standard urban building model. Firstly,the grid independence test and simulation accuracy test were carried out,and the reliable grid scheme and simulation conditions were determined. Then,through numerical simulation,the distribution law of average wind speed field and trace field in the central area of the standard urban building model was obtained and summarized. By changing the building density, relative height and degree of staggeredness of the building cluster model,the influences of different conditions on the wind environment were studied. The results show that the average wind speed in the central region is higher than that of the incoming flow,and there are several vortex regions. The extreme wind speed zone is directly in front of and behind the central building. The average wind speed in the central area is not sensitive to the change of building density,but when the building density is below 0.55,the wind speed rapidly decays. The height ratio of the surrounding buildings and the central building has a significant impact on the average wind speed in the central area. The average wind speed decreases with the increase of the height ratio. When the height ratio reaches around 0.5,there is a sudden drop in wind speed. The average wind speed in the central region decreases approximately linearly with the increase of the degree of staggeredness,and the wind environment of different staggered forms is significantly different.

参考文献/References:

[1] 中华人民共和国住房和城乡建设部.绿色建筑评价标准:GB/T 50378—2019[S].北京:中国建筑工业出版社,2019.
[2] 朱鑫姝,殷勇,邓佩刚.数据机房机架式服务器空气流动的数值模拟[J].武汉工程大学学报,2022,44(6):683-689.
[3] 闫渤文,魏民,鄢乔,等.高层建筑形状及布局对城市街区行人风环境影响研究[J].湖南大学学报(自然科学版),2021,48(11):61-71.
[4] BLOCKEN B, JANSSEN W D,vna HOOFF T.CFD simulation for pedestrian wind comfort and wind safety in urban areas:general decision frame work and case study for the Eindhoven University campus [J]. Environmental Modelling & Software,2012,30:15-34.
[5] ZHANG X L,WEERASURIYA A U,LU B,et al. Pedestrian-level wind environment near a super-tall building with unconventional configurations in a regular urban area[J].Building Simulation,2020,13(2):439-459.
[6] 汪阔,沈炼,韩艳,等.基于修正SST k-ω湍流模型的建筑群风环境数值分析[J].西安建筑科技大学学报(自然科学版),2021,53(3):386-392.
[7] 杨易,张之远,余先锋.基于一种标准城市建筑模型的行人高度风环境比较研究[J].同济大学学报(自然科学版),2022,50(6):784-792.
[8] 张爱社,顾明,张陵.建筑群行人高度风环境的数值模拟[J].同济大学学报(自然科学版),2007,35(8):1030-1033.
[9] 徐晓达. 超高层建筑周边行人高度处平均风速分布特性及风环境评估[D].北京:北京交通大学,2019.
[10] 侯璐.大连高校园区风环境模拟研究[D].西安:西安建筑科技大学,2017.
[11] 卢瑜. 超高层建筑底部区域的行人风环境研究[D].广州:华南理工大学,2021.
[12] 沈炼,邓万钞,唐春朝,等.基于多尺度耦合的城市小区风环境大涡模拟研究[J].湖南理工学院学报(自然科学版),2019,32(3):37-43.
[13] 广东省住房和城乡建设厅.建筑风环境测试与评价标准:DBJ/T 15-154—2019[S].北京:中国城市出版社,2019.
[14] 纪兵兵,陈金瓶.ANSYS ICEM CFD网格划分技术实例详解[M]. 北京:中国水利水电出版社,2012:254-255.
[15] 李琼,持田灯,孟庆林,等.建筑室外风环境数值模拟的湍流模型比较[J].华南理工大学学报(自然科学版),2011,39(4):121-127.
[16] LAUNDER B E,SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
[17] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2012.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-03-16
基金项目:2021无锡城市职业技术学院“青蓝工程”项目(202138);2022无锡城市职业技术学院校级科研课题(WXCY-2022-KY-07)
作者简介:楚晨晖 ,硕士,讲师。Email:[email protected]
引文格式:楚晨晖,孟亮,朱瑶瑶. 基于标准建筑群模型的行人高度风环境数值模拟研究[J]. 武汉工程大学学报,2024,46(6):699-705.
更新日期/Last Update: 2024-12-31