|本期目录/Table of Contents|

[1]刘繁,李国伟,马志斌,等.矩形压缩谐振腔内基底对电场影响的仿真模拟[J].武汉工程大学学报,2013,(01):51-54.[doi:103969/jissn16742869201301011]
 LIU Fan,LI Guo wei,MA Zhi bin,et al.Simulation of substrate influence on electric field?in compression rectangular cavity[J].Journal of Wuhan Institute of Technology,2013,(01):51-54.[doi:103969/jissn16742869201301011]
点击复制

矩形压缩谐振腔内基底对电场影响的仿真模拟(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2013年01期
页码:
51-54
栏目:
资源与土木工程
出版日期:
2013-01-31

文章信息/Info

Title:
Simulation of substrate influence on electric field?in compression rectangular cavity
文章编号:
16742869(2013)01005104
作者:
刘繁李国伟马志斌汪建华
武汉工程大学材料科学与工程学院,湖北省等离子体化学与新材料重点实验室,湖北 武汉 430074
Author(s):
LIU Fan LI Guowei MA Zhibin WANG Jianhua
Province Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials
Science and Technology, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
谐振腔 高频结构仿真器基底尺寸电场模拟
Keywords:
resonant cavity high frequency structure simulator substrate size electric field simulation
分类号:
O411.3
DOI:
103969/jissn16742869201301011
文献标志码:
A
摘要:
针对微波等离子体化学气相沉积金刚石过程中,矩形谐振腔中激发的等离子体稳定性和均匀性差的问题,提出通过用Ansoft软件对矩形压缩谐振腔进行模拟计算来优化设计谐振腔的方法.模拟中,假设除了微波输入端口以外,所有的边界都定义为理想电导体;微波能以平面波的形式,通过矩形波导被耦合到微波谐振腔内;再用高频结构仿真器联合求解满足模型条件的麦克斯韦方程组,得出谐振腔中的电场分布结果.分别模拟了基底深入谐振腔内高度为1.5、2、2.5、3、4 mm和基底半径为11、13、15、17 mm时,腔体内的电场分布.数值模拟结果表明,压缩谐振腔内的最大电场强度为817 V/m左右,较压缩之前的电场强度增高了近一倍,且基底深入谐振腔高度为2 mm,基底半径为13 mm左右时,装置内电场强度较集中.
Abstract:
The plasma used for microwave plasma chemical vapor deposition diamond in a rectangular resonant cavity has poor stability and uniformity. The Ansoft software is used to simulate the electric field in the rectangular compression resonant cavity and optimize the device. In the simulation, it assumed that all the boundaries were defined as ideal electric conductor in addition to the microwave input port; microwave with plane wave form was got through the rectangular waveguide and coupled to the microwave resonant cavity; The result of electric field distribution in resonant cavity was achieved through the Maxwell’s equations solved by high frequency structure simulator which suited for the model. The electric field distribution in cavity was simulated in different parameters that the substrate radii were 11 mm, 13 mm, 15 mm, 17 mm and the depths of substrate inserted in the reaction cavity were1.5 mm, 2 mm, 2.5 mm, 3 mm, 4 mm, respectively. Numerical simulation results show that electric field strength in the compression resonant cavity is about 817 V /m which is almost double compared with that in standard waveguide cavity. The electric field strength inside the cavity is concentrated when the substrate radius is 13 mm and the depth of substrate inserted in the reaction cavity is 2 mm.

参考文献/References:

[1]Wu Z Y, Xu Y Y, Zhang X L, et al Microwave plasma treated carbon nanotubes and their electrochemical biosensing application\[J\]. Talanta 2007,72:13361341.

[2]Koidl P, Klages C P. Optical application of polycrystalline diamond\[J\]. Diamond and Related Materials. 1992(1):10651074.
[3]Zuo S S, Yaran M K, Grotjohn T A. Investigation of diamond deposition uniformity and quality for free standing film and substrate applications\[J\]. Diamond and Related Materials. 2008,17:300305.
4]Tachibana T, Ando Y, Watanabe A. Diamond films grown by a 60kW microwave plasma chemical vapor deposition system\[J\]. Diamond and Related Materials. 2001(10):15691572.[5]谢拥军,王鹏.Ansoft HFSS基础及应用\[M\].西安:西安电子科技大学出版社,2007.
[6]廖承恩.微波技术基础\[M\].北京:国防工业出版社,1984.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20121211基金项目:国家自然科学基金(10875093)资助项目作者简介:刘繁(1983),女,湖北仙桃人,讲师,博士.研究方向:微波电磁场计算模拟.
更新日期/Last Update: 2013-04-10