|本期目录/Table of Contents|

[1]邹 菁,彭俊敏,柳子涵,等.硫化锌量子点/类石墨相氮化碳异质结的制备及应用[J].武汉工程大学学报,2015,37(04):12-16.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
 ,,et al.Synthesis and application of zinc sulfide quantum dots/graphite-like carbon nitride heterojunction[J].Journal of Wuhan Institute of Technology,2015,37(04):12-16.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
点击复制

硫化锌量子点/类石墨相氮化碳异质结的制备及应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年04期
页码:
12-16
栏目:
化学与化学工程
出版日期:
2015-04-30

文章信息/Info

Title:
Synthesis and application of zinc sulfide quantum dots/graphite-like carbon nitride heterojunction
文章编号:
1674—2869(2015) 04—0012—05
作者:
邹 菁彭俊敏柳子涵闭彩萍周 鑫张 胜龚晚芸邓河霞
武汉工程大学化学与环境工程学院,湖北 武汉430074
Author(s):
ZOU JingPENG Jun-minLIU Zi-hanBI Cai-pingZHOU XinGONG Wan-yunDENG He-xia
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
硫化锌量子点/类石墨相氮化碳异质结溶剂热光电催化活性
Keywords:
zinc sulfide quantum dots/graphite-like carbon nitride heterojunction solvothermal method photoelectrocatalysis activity
分类号:
O643;O649
DOI:
10. 3969/j. issn. 1674—2869. 2015. 04. 003
文献标志码:
A
摘要:
采用溶剂热法合成了硫化锌量子点,并成功地与类石墨相氮化碳复合制备了硫化锌量子点/类石墨相氮化碳异质结光电催化剂. 通过X射线衍射仪、电子能谱仪、X射线光电子能谱仪、透射电子显微镜、紫外可见分光光度计等仪器分别对样品的结构、组成、形貌、光学性能、电学性能进行了表征分析. 结果表明:质量比为1∶9硫化锌量子点/类石墨相氮化碳的光催化活性最高,对罗丹明B的降解速率为0.802 4 h-1;在2.5 h时降解率为86.7%,较纯的类石墨相氮化碳降解率提高了45%. 同时探究了不同复合方法对复合材料光电催化活性的影响,结果显示,搅拌复合制备的样品光电催化活性明显高于研磨煅烧制备得到的样品.
Abstract:
Zinc sulfide quantum dots/graphite-like carbon nitride heterojunction photoelectrocatalyst was synthesized by solvothermal method and mixing composite. The structure, composition, morphology, and optoelectrical properties of the as-prepared Zinc sulfide quantum dots/graphite-like carbon nitride composites were characterized by X-rays diffractometer, energy dispersive spectrometer, X-ray photoelectron spectrometer, transmission electron microscopy and UV-visible spectroscopy, respectively. The results show that Zinc sulfide quantum dots/graphite-like carbon nitride with ratio of 1∶9 exhibits the highest photocatalytic activity for the degradation of RhB, and the degradation rate is 0.802 4 h-1. At 2.5 h, the degradation rate is 86.7%, which is 41.7% higher than that of pure graphite-like carbon nitride. By comparing the samples with different compound methods, the result reveals that photoelectrocatalysis activity of mixing composite samples is significantly higher than that of grinding calcined samples.

参考文献/References:

[1] YAN S C, LI Z S, ZOU Z G . Photodegradation performance of g-C3N4 Fabricated by directly heating melamine[J].Langmuir,2009,25(17):10397-10401.[2] CAO S W, Yu J G. g-C3N4 Based photocatalysts for hydrogen generation[J].J Phy Chem Lett,2014(5):2101-2107.[3] WANG X,CHEN X,THOMAS A, et al. Metal-containing carbon nitride compounds:A New Functional Organic-Metalhybrid Material[J]. Adv Mater, 2009, 21(16):1609-1621.[4] LIU G, NIU P, SUN C H, et al. Unique Electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. J Am Chem Soc,2010,132:11642-11648.[5] YAN S C, LI Z S, ZOU Z G. Photodegradation of rhodamine b and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26(6):3894-3901.[6] LI J H, SHEN B, HONG Z H, et al. A facile approach to synthesize novel oxygen-dopedg-C3N4 with superior visible?鄄light photoreactivity[J]. Chem Commun, 2012,48:12017-12019.[7] 阮林伟,裘灵光,朱玉俊,等. g-C3N4碳位掺杂电学及光学性质的分析[J]. 物理化学学报, 2014, 30(1): 43-52.RUAN Lin-wei, QIU Ling-guang, ZHU Yu-jun, et al. Analysis of electrical and optical properties of g-C3N4 with carbon-position doping[J]. Anta Phys Chim Sin, 2014, 30(1): 43-52.(in Chinese)[8] GE L, ZUO F, LIU J K, et al. Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots[J]. J Phys Chem C, 2012, 116:13708-13714.[9] TIAN Y L, CHANG B B, LU J L, et al. Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities[J]. ACS Appl Mater Interfaces, 2013(5): 7079-7085.[10] DI J, XIA J X, YIN S, et al. Preparation of sphere-like g-C3N4/BiOI Photocatalysts via a reactable ionic liquid for visible?鄄llight?鄄driven photocatalytic degradation of pollutants[J]. J Mater Chem A, 2014(2):5340?鄄5351.[11] ZHANG J Y, WANG Y H, JIN J, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of Core/Shell CdS/gC3N4 nanowires[J]. ACS Appl Mater Interfaces,2013(5):10317-10324.[12] KUMAR S, SURENDAR T, KUMAR B, et al. Synthesis of magnetically separable and recyclableg C3N4 Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible?鄄light irradiation[J]. J Phys Chem C, 2013, 117: 26135-26143.[13] XU M, HAN L, DONG S J. Facile fabrication of highly efficient g?鄄C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light Photocata-lytic activity[J]. ACS Appl Mater Interfaces,2013(5): 12533-12540.[14] CHEN R, LI D H, LIU B, et al. Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature[J]. Nano Let , 2010(1): 4956-4961.[15] 桂明生,王鹏飞,袁东,等. Bi2WO6/g-C3N4复合型催化剂的制备及其可见光光催化性能[J]. 无机化学学报,2013,29(10):2057-2064.GUI Ming-sheng, WANG Peng-fei, YUAN Dong, et al. Synthesis and visible-light photocataltic activity of Bi2WO6/g-C3N4 composite photocatalyst[J]. Chinese Journal of Inoriganic Chemistry, 2013, 29(10): 2057-2064. (in Chinese)[16] XU J, ZHANG L, SHI R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. J Mater Chem A,2013(1):14766-14772.

相似文献/References:

[1]安盼龙,赵瑞娟,许丽萍,等.内建电场对纳构半导体功函数的调制[J].武汉工程大学学报,2011,(04):50.[doi:10.3969/j.issn.16742869.2011.04.013]
 AN Pan long,ZHAO Rui juan,XU Li ping,et al.Modulation on work function of nanosemiconductor material by builtin electric field[J].Journal of Wuhan Institute of Technology,2011,(04):50.[doi:10.3969/j.issn.16742869.2011.04.013]
[2]方俊雄,邓文明,江吉周,等.β-FeOOH/U-g-C3N4异质结的制备及光电催化析氢性能[J].武汉工程大学学报,2020,42(02):165.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
 FANG Junxiong,DENG Wenming,JIANG Jizhou,et al.Preparation of β-FeOOH/U-g-C3N4 Heterojunction and Their Performances in Photoelectrocatalytic Hydrogen Evolution Reaction[J].Journal of Wuhan Institute of Technology,2020,42(04):165.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
[3]邓文明,张 胜,江吉周,等.CuS nanotube/g-C3N4异质结的合成及光催化性能[J].武汉工程大学学报,2021,43(01):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
 DENG Wenming,ZHANG Sheng,JIANG Jizhou,et al.Synthesis and Photocatalytic Performances of CuS Nanotube/g-C3N4 Heterojunction[J].Journal of Wuhan Institute of Technology,2021,43(04):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
[4]王雪燕,袁嘉泽,何禄英*.C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究[J].武汉工程大学学报,2024,46(05):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]
 WANG Xueyan,YUAN Jiaze,HE Luying*.Photocatalytic degradation of methylene blue by C-vacancy andg-C3N4/BiOCl heterojunction [J].Journal of Wuhan Institute of Technology,2024,46(04):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]

备注/Memo

备注/Memo:
收稿日期:2015—3—18基金项目:国家自然科学基金(21471122);武汉工程大学第九期大学生校长基金作者简介:邹菁(1963—),女,湖南新化人,教授,博士,博士研究生导师. 研究方向:纳米催化材料的设计尧合成及在环境污染物降解中的应用曰环境及材料分析.
更新日期/Last Update: 2015-05-21