|本期目录/Table of Contents|

[1]孙 政,何桂平*.水性环氧改性半柔性路面材料的低温抗裂性能[J].武汉工程大学学报,2015,37(10):23-27.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 005]
 .Low-temperature cracking resistance of water-borne epoxy resin modified semi-flexible pavement[J].Journal of Wuhan Institute of Technology,2015,37(10):23-27.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 005]
点击复制

水性环氧改性半柔性路面材料的低温抗裂性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
37
期数:
2015年10期
页码:
23-27
栏目:
资源与土木工程
出版日期:
2015-10-31

文章信息/Info

Title:
Low-temperature cracking resistance of water-borne epoxy resin modified semi-flexible pavement
文章编号:
1674-2869(2015)10-0023-05
作者:
孙 政何桂平*
深圳市公路交通工程试验检测中心,广东 深圳 518049
Author(s):
SUN ZhengHE Gui-ping
Testing Center of Shenzhen City Road Traffic Engineering, Shenzhen 518049, China
关键词:
三相胶结体系干缩应力交织网络
Keywords:
three-phase grouting system dry shrinkage stress weaving network
分类号:
U414
DOI:
10. 3969/j. issn. 1674-2869. 2015. 10. 005
文献标志码:
A
摘要:
为了改善传统半柔性路面材料的低温抗裂性能,采用水泥-乳化沥青-水性环氧树脂三相有机无机复合材料作为新型胶结体系制备的半柔性路面材料. 采用匀质性及回弹模量检测方法确定胶结材料中的乳化沥青与水泥的质量比,调整水性环氧树脂与乳化沥青的质量比研究其低温抗裂性能. 结果表明:当水性环氧树脂占乳化沥青的质量比为0.6时,半柔性路面材料的弯拉劲度模量达到2 332 MPa,最大弯拉应变达到2 662 με,接近沥青玛蹄脂混合料的水平. 扫描电镜研究表明:三相有机无机胶结体系形成以沥青材料为连续相、水性环氧树脂为改性分散相、水泥水化产物为衔接体的三维空间网络结构, 既改善了水泥浆材料的干缩应力,同时增强了胶浆与基体沥青混合料的界面粘结力.
Abstract:
To improve the low temperature crack resistance of traditional pavement, semi-flexible pavement was prepared by using cement-emulsified asphalt-waterborne epoxy resin three-phase organic inorganic composite materials as grouting material. The mass ratio of emulsified asphalt and cement in grouting materials was determined by the method of homogeneous and resilient modulus testing. Results showed that when the mass ratio of waterborne epoxy and emulsified asphalt was 0.6, the maximum bending strain and bending stiffness modulus reached 2 662 με and 2 332 MPa, respectively, which was close to those of the stone matrix asphalt. SEM analysis illustrated that in the three-phase organic inorganic grouting system, three-dimensional network structure was formed, in which asphalt, waterborne epoxy resin and cement hydrates worked as continuous phase, dispersed phase and connector, respectively. This structure not only improved the cement material shrinkage stress but also enhanced the bonding force between mortar and matrix asphalt mixture.

参考文献/References:

[1] 彭波. 沥青混合料集料几何特性与结构研究[D]. 西安:长安大学, 2008:4-10.PEN Bo. Study on geometric characteristics and structure of asphalt mixture aggregate[D].Xi'an: Chang'an University, 2008:4-10.(in Chinese)[2] 杜顺成. 沥青混合料高温稳定性评价指标和级配设计方法研究[D]. 西安:长安大学, 2007:2-6.DU Shun-cheng. Study of evaluation index of high-temperature stability and design methodology for asphalt mixture[D]. Xi'an: Chang'an University, 2007:2-6. (in Chinese)[3] 黎振民. 灌注橡胶粉的半柔性路面复合材料温度稳定性研究[D]. 柳州:广西科技大学, 2013:10-15.LI Zheng-min. The composite temperature stability study on Perfusion rubber powder semi-flexible pavement[D]. Liuzhou:Guangxi University of Science and Technology, 2013:10-15. (in Chinese)[4] 张大可,成长庆,吴国雄. 半柔性路面水稳定性及低温抗裂性能分析[J]. 重庆交通学院学报,2007,3(26):55-57.ZHANG Da-ke, CHENG Chang-qing, WU Guo-xiong. Water susceptibility and crack resistance at low temperature of semi-flexible pavement[J]. Journal of Chongqing Jiaotong University,2007,26(3):55-57. (in Chinese)[5] 张荣鹍. 高性能灌注式半柔性路面材料的研究与应用[D].武汉:武汉理工大学, 2009:2-10.ZHANG Rong-kun. Research and application on high-performance pouring semi-flexible pavement material[D]. Wuhan: Wuhan University of Technology,2009:2-10. (in Chinese)[6] 吴丹. 半柔性路面材料抗疲劳性能的试验研究[D]. 重庆:重庆交通大学, 2009:25-30.WU Dan. Research on fatigue property of semi-flexible pavement[D]. Chongqing: Chongqing Jiaotong University, 2009:25-30. (in Chinese)[7] 黄冲. 半柔性路面材料的体积稳定性与抗裂性能研究[D].武汉:武汉理工大学, 2010: 5-10.HUANG Chong. Research on volume-stability and crack-resistance of semi-flexible pavement material[D]. Wuhan: Wuhan University of Technology, 2010: 5-10. (in Chinese)[8] 周晓军, 沈丽娟. 沥青混合料结构与强度的认识[J]. 民营科技,2008(2):156-157.ZHOU Xiao-jun, SHEN Li-juan. Knowledge about structure and strength of the asphalt mixture[J]. Private science and technology,2008(2):156-157.(in Chinese)[9] Setyawan. Development of semi-flexible heavy-duty pavements[J]. PhD Thesis University of Leeds, 2003, 143(5):72-84.[10] 沈凡. 水泥-乳化沥青-水性环氧复合胶结钢桥面铺装材料研究[D]. 武汉:武汉理工大学,2012:40-55.SHEN Fan. Research on composite steel bridge deck pavement of cement-emulsifying asphalt and waterborne epoxy[D]. Wuhan: Wuhan University of Technology, 2012:40-55. (in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2015-09-08基金项目:深圳市科学技术创新委员会科技项目(CXZZ20140820151319424).作者简介:孙政(1964-),湖北仙桃人,硕士,工程师. 研究方向:公路尧桥梁及隧道建筑材料的研究及检测. * 通信联系人.
更新日期/Last Update: 2015-11-08