|本期目录/Table of Contents|

[1]柯彩霞,徐德蛟,闫云君*,等.生物酶法拆分手性药物的研究进展[J].武汉工程大学学报,2016,38(06):517-520.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 001]
 KE Caixia,XU Dejiao,YAN Yunjun*,et al.Advance in Enzymatic Resolution of Chiral Drugs[J].Journal of Wuhan Institute of Technology,2016,38(06):517-520.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 001]
点击复制

生物酶法拆分手性药物的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年06期
页码:
517-520
栏目:
化学与化学工程
出版日期:
2016-12-15

文章信息/Info

Title:
Advance in Enzymatic Resolution of Chiral Drugs
作者:
柯彩霞1 徐德蛟2 闫云君1* 徐 莉1*
1. 华中科技大学生命科学与技术学院,湖北 武汉 430074; 2. 湖北省孝感市邹岗中心卫生院,湖北 孝感 432100
Author(s):
KE Caixia1XU Dejiao2YAN Yunjun1*XU Li1*
1.School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Zougang People’s Hospital, Xiaogan 432100, China
关键词:
酶法拆分手性药物对映选择性异构体
Keywords:
enzymatic chiral resolution chiral drug enantioselectiveisomer
分类号:
Q93-335
DOI:
10. 3969/j. issn. 1674?2869. 2016. 06. 001
文献标志码:
A
摘要:
在现有手性药物的制备过程中, 通常使用化学催化、气相或液相色谱分离纯化的方法,而耗能大、花费高、副产物多等是其主要缺点. 近年来,生物酶法拆分手性药物的研究逐渐增多,多类生物酶已被报道具有催化手性拆分的能力,其对不同类底物的应用是目前研究的重点之一.在生物酶法拆分手性药物的过程中,反应溶剂与酰基供体是影响对映选择拆分效率的主要因素;另外,合理应用酶的固定化技术能有效的提高拆分效率,使其具有工业应用的可能. 生物酶法拆分手性药物因具有副产物少、操作简便、环境友好等优点而备受关注,有望补充或替换化学法在手性药物制备中的作用. 随着结构生物学、现代分子生物学的发展与酶法拆分手性药物研究的不断深入,通过对酶分子空间结构与催化机理的分析研究,人工合成具有特定催化功能的酶成为可能,生物酶法拆分手性药物技术的应用有望得到较大的突破.
Abstract:
Chemical catalysis, gas or liquid chromatography separation and purification are the main technologies in chiral drug preparation, which result in high energy consumption, high cost, and multi-byproducts and so on. Enzymatic resolution in chiral drugs preparation was attracted increasing attention in recent years. Many kinds of enzyme were investigated on their resolution ability towards different substrates, and their application has become a topic subject. It was found that the reaction solvent and acyl donor are the most important factors to enantio selective efficiency. A proper immobilization technology can significantly enhance the enzyme activity and pave the way to industrialization. The enzymatic resolution of chiral drugs could play a key role in chiral pharmacy production with less byproducts, simple operation and environmental frendliness. Based on the rapid progress in structure biology, especially deep understand of enzyme structure and catalytic mechanism, the enzymatic chiral resolution is expected to be made great advances with the development of modern techniques of molecular biology and chiral drug.

参考文献/References:

[1] CANER H, GRONER E, LEVY L, et al. Trends in the development of chiral drugs [J]. Drug discovery today, 2004, 9(3): 105-110. [2] THERAPONTOS C, ERSKINE L, GARDNER E R, et al. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation [J]. Proceedings of the national academy of sciences, 2009, 106(21): 8573-8578. [3] SHAFAATI A. Chiral drugs: current status of the industry and the market [J]. Iranian journal of pharmaceutical research, 2007,6(2): 73-74. [4] GHANEM A, ABOUL-ENEIN M N, EL-AZZOUNY A, et al. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses [J]. Journal of chromatography A, 2010, 1217(7): 1063-1074. [5]GIACOMINI D, GALLETTI P, PARADISI F. Environmentally-friendly synthesis of profens [J]. Chem Inform, 2009, 40(31): i. [6] SCHOEMAKER H E, MINK D, WUBBOLTS M G. Dispelling the myths-biocatalysis in industrial synthesis [J]. Science, 2003, 299(5613): 1694-1697. [7] 黄璜, 李宗军, 王远亮, 等. 各类微生物脂肪酶酶学性质及应用的研究进展 [J]. 粮油食品科技,2014,22(1): 109-118. HUANG H, LI Z J, WANG Y L, et al. Progress in enzymatic properties of microbial lipase and applications [J]. Science and technology of cereals, oils and foods, 2014, 22 (1): 109-118. [8] 傅德进, 郑仁朝, 郑裕国. 摩氏摩根菌产酯酶条件优化及在普瑞巴林手性中间体合成中的应用 [J]. 生物加工过程, 2012, 10(6): 12-17. FU D J, ZHEN R C, ZHEN Y G. Optimization of Morgarella morganii esterase production and its application in synthesis of chiral intermediate of Pregabalin [J]. Chinese journal of bioprocess engineering, 2012, 10 (6): 12-17. [9] 崔志芳, 李春露, 姚善泾. 氨基酰化酶拆分制备手性蛋氨酸工艺条件研究 [J]. 化学反应工程与工艺, 2006, 22(1): 88-92. CUI Z F, LI C L, YAO S J. The research on process conditions for the chiral resolution of l-methioine by aminoacylase [J]. Chemical reaction engineering and technology, 2006, 22(1): 88-92. [10] 王华磊. 新型腈水解酶基因的高效挖掘及其在合成光学纯α-羟基酸中的应用研究 [D]. 上海:华东理工大学, 2013. [11] 郑仁朝. 立体选择性酰胺酶的筛选及其动力学拆分制备(S)-(+)-2,2-二甲基环丙烷甲酰胺的研究 [D]. 杭州:浙江工业大学, 2007. [12] 陈兵. 重组镰孢霉菌内酯水解酶在手性合成中的新应用 [D]. 上海:华东理工大学, 2010. [13] 唐良华. 脂肪酶的生产及其在布洛芬手性拆分中的应用基础研究 [D]. 杭州: 浙江大学, 2007. [14] LI X, HUANG S, XU L, et al. Improving activity and enantioselectivity of lipase via immobilization on macroporous resin for resolution of racemic 1-phenylethanol in non-aqueous medium [J]. BMC biotechnology, 2013, 13(1): 1. [15] GHANEM A, ABOUL-ENEIN H Y. Lipase-mediated chiral resolution of racemates in organic solvents [J]. Tetrahedron-asymmetry, 2004, 15(21): 3331-3351. [16] FUJIMOTO Y, IWADATE H, IKEKAWA N. Preparation of optically active 2, 2’-dihydroxy-1, 1’-binaphthyl via microbial resolution of the corresponding racemic diester [J]. Journal of the chemical society, chemical communications, 1985(19): 1333-1334. [17] KRISHNA S H, PERSSON M, BORNSCHEUER U T. Enantioselective transesterification of a tertiary alcohol by lipase A from Candida Antarctica [J]. Tetrahedron:asymmetry, 2002, 13(24): 2693-2696. [18] BRACKENRIDGE I, MCCAGUE R M , ROBERTS S M, et al. Enzymic resolution of oxalate of a tertiary alcohol using porcine pancreatic lipase [J]. Journal of the chemical society, transactions, 1993(1): 10. [19] CHEN S, FANG J. Preparation of optically active tertiary alcohols by enzymatic methods. Application to the synthesis of drugs and natural products [J]. The journal of organic chemistry, 1997, 62(13): 4349-4357. [20] 岳珂. 解脂假丝酵母脂肪酶在苯乙醇手性拆分中的应用及菌种产酶发酵条件, 酶学性质的研究 [D]. 杭州:浙江工业大学, 2008. [21] LI X, XU L, WANG G, et al. Conformation studies on Burkholderia cenocepacia lipase via resolution of racemic 1-phenylethanol in non-aqueous medium and its process optimization [J]. Process biochemistry, 2013, 48(12): 1905-1913. [22] ANTONIA P, VAN RANTWIJK F, SHELDON R A . Effective resolution of 1-phenyl ethanol by Candida antarctica lipase B catalysed acylation with vinyl acetate in protic ionic liquids (PILs) [J]. Green chemistry, 2012, 14(6): 1584-1588. [23] HUANG S,LI X,XU L, et al. Protein-coated microcrystals from Candida rugosa lipase: its immobilization, characterization, and application in resolution of racemic ibuprofen [J]. Applied biochemistry and biotechnology,2015,177(1): 36- 47. [24] 郭华颖. 外消旋布洛芬酶法拆分的研究 [D]. 福州:福建师范大学, 2008. [25] 李小冬, 吴嘉, 贾东晨, 等. 固定化酶的研究方法概述 [J]. 中国酿造, 2011(11): 5-9. LI X D, WU J, JIA D C, et al. Review of research methods of enzymes immobilization [J]. China brewing, 2011(11): 5-9. [26] 徐莉, 侯红萍. 酶的固定化方法的研究进展 [J]. 酿酒科技, 2010(1): 86-89. XU L,HOU H P. Research progress in the immobilization of enzymes [J]. Liquor-making science and technology, 2010(1): 86-89. [27] 游金坤, 余旭亚, 赵鹏. 吸附法固定化酶的研究进展 [J]. 化学工程, 2012(4): 1-5. YOU J K, YU X Y, ZHAO P. Progress and trend of adsorption-based enzyme immobilization[J]. Chemical engineering (China), 2012(4): 1-5. [28] 魏晓飞. 溶胶—凝胶法固定化枯草杆菌脂肪酶及拆分手性醇的研究 [D]. 长春:吉林大学, 2011. [29] 崔彦君. 新型磁性高分子载体的制备, 固定化脂肪酶及其催化酮洛芬手性拆分的研究 [D]. 兰州:兰州大学, 2012. [30] KE C, LI X, HUANG S, et al. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on modified multi-walled carbon nanotubes [J]. RSC advances, 2014, 4(101): 57810-57818. [31] LI X, HUANG S, XU L, et al. Improving activity and enantioselectivity of lipase via immobilization on macroporous resin for resolution of racemic 1-phenylethanol in non-aqueous medium [J]. BMC biotechnology, 2013, 13: 92.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-12-23