|本期目录/Table of Contents|

[1]杨 锐,沈喜洲*,刘 闯,等.十六烷相变温度可调性及减少熔化时间的研究[J].武汉工程大学学报,2017,39(03):216-222.[doi:10. 3969/j. issn. 1674?2869. 2017. 03. 003]
 YANG Rui,SHEN Xizhou*,LIU Chuang,et al.Adjustability of Phase Change Temperature and Decrease in Melting Time of n-Hexadecane[J].Journal of Wuhan Institute of Technology,2017,39(03):216-222.[doi:10. 3969/j. issn. 1674?2869. 2017. 03. 003]
点击复制

十六烷相变温度可调性及减少熔化时间的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年03期
页码:
216-222
栏目:
化学与化学工程
出版日期:
2017-06-24

文章信息/Info

Title:
Adjustability of Phase Change Temperature and Decrease in Melting Time of n-Hexadecane
文章编号:
20170303
作者:
杨 锐1沈喜洲12*刘 闯1沈 陟1方柳亚1
1. 武汉工程大学化工与制药学院,湖北 武汉 430205;2. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
YANG Rui1 SHEN Xizhou12* LIU Chuang1 SHEN Zhi1 FANG Liuya1
1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;2. Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education, Wuhan 430205, China
关键词:
十六烷改进剂相变温度熔解时间
Keywords:
n-hexadecane modifying agent phase change temperature melting time
分类号:
TK5
DOI:
10. 3969/j. issn. 1674?2869. 2017. 03. 003
文献标志码:
A
摘要:
考察了不同改进剂对十六烷相变温度、相变体积收缩率、熔解时间的影响. 结果表明,正辛烷、正壬烷、正庚烷、对二甲苯均可以调节十六烷的相变温度. 但是,正壬烷、正庚烷、对二甲苯会导致十六烷的相变体积收缩率大幅度下降,而正辛烷则较小. 当正辛烷加入质量分数为5%时,十六烷的相变温度为13.3 ℃,相变体积收缩率为9.6%. 此外,随着正辛烷质量分数的增加,不同温度条件下相变材料的熔化时间可降低15%~59%. 正辛烷是一种既能调节十六烷相变温度又可缩短其熔解时间,同时对十六烷相变体积收缩率影响较小的改进剂.
Abstract:
Effects of different modifiers on phase change temperature, volumetric contraction rate and melting time of n-hexadecane were investigated. The results show that the four modifiers of n-octane, n-nonane, n-heptane and para-xylene can adjust the phase change temperature of n-hexadecane. The volumetric contraction rate of n-hexadecane decreases sharply by n-nonane, n-heptane and para-xylene, while it varied a little by n-octane. The phase change temperature of n-hexadecane reaches 13.3 ℃ and the volumetric contraction rate of the n-hexadecane is 9.6% with 5% of n-octane. The melting times of n-hexadecane reduce 15%-59% at different temperature conditions with the increase of n-octane mass fraction. It can be concluded that n-octane is an effective modifier adjusting the phase change temperature and reducing the melting time of n-hexadecane, and has slight effect on the volumetric contraction rate of n-hexadecane.

参考文献/References:

[1] 苏佳纯,曾恒一,肖钢,等. 海洋温差能发电技术研究现状及在我国的发展前景[J]. 中国海上油气,2012(4):84-98. SU J C, ZENG H Y, XIAO G, et al. Research status and prospect of ocean thermal energy conversion technology[J]. China Offshore Oil & Gas, 2012(4):84-98. [2] 赵建云,朱冬生,周泽广,等. 温差发电技术的研究进展及现状[J]. 电源技术,2010,34(3):310-313. ZHAO J Y, ZHU D S, ZHOU Z G, et al. Research progress of thermoelectric power generation[J]. Chinese Journal of Power Sources, 2010, 34(3):310-313. [3] ZHANG Q, ZHAO Y, FENG J. Systematic investigation on shape stability of high-efficiency SEBS/paraffin form-stable phase change materials[J]. Solar Energy Materials & Solar Cells,2013,118(10):54-60. [4] SUN Z, KONG W, ZHENG S, et al. Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials[J]. Solar Energy Materials & Solar Cells, 2013, 117(14):400-407. [5] 华建社,张娇,张焱,等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报,2016,12:61-64,75. HUA J S, ZHANG J, ZHANG Y, et al. Study on thermal properties and shape-stabilizing of expanded graphite /paraffin composite phase change material[J]. Materials Review, 2016,12:61-64,75. [6] 蒋自鹏,铁生年. 膨胀石墨/芒硝复合定形相变材料制备及性能研究[J]. 材料导报,2016,12:55-60. JIANG Z P, TIE S N. Preparation of glauber/expanded graphite composite phase change material and its properties[J]. Materials Review,2016,12:55-60. [7] 王大伟,余荣升,晏华,等. 碳纤维/石蜡/膨胀石墨复合相变材料的制备及强化传热研究[J]. 材料导报,2014,24:70-73. WANG D W, YU R S, YAN H, et al. Study on preparation and heat transfer enhancement of carbon fiber/paraffin/expanded graphite phase change composites[J]. Materials Review,2014,24:70-73. [8] CUI Y, LIU C, HU S, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials[J]. Solar Energy Materials & Solar Cells, 2011, 95(4):1208-1212. [9] KUMARESAN V, VELRAJ R, DAS S K. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification[J]. Heat and Mass Transfer, 2012, 48(8):1345-1355. [10] TENG T P, CHENG C M, CHENG C P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite[J]. Applied Thermal Engineering, 2013, 50(1):637–644. [11] WU S, ZHU D, ZHANG X, et al. Preparation and melting/freezing characteristics of cu/paraffin nanofluid as phase-change material (PCM)[J]. Energy & Fuels, 2011, 24(3):1894-1898. [12] WU S Y, WANG H, XIAO S, et al. An investigation of melting/freezing characteristics of nanoparticle- enhanced phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(3): 1127-1131. [13] JESUMATHY S, UDAYAKUMAR M, SURESH S. Experimental study of enhanced heat transfer by addition of CuO nanoparticle[J]. Heat and Mass Transfer, 2012, 48(6):965-978. [14] HARIKRISHNAN S, KALAISELVAM S. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material[J]. Thermochimica Acta, 2012, 533(533):46-55. [15] TENG T P, YU C C. Characteristics of phase-change materials containing oxide nano-additives for thermal storage[J]. Nanoscale Research Letters, 2012, 7(1):611. [16] WARZOHA R J, FLEISCHER A S. Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks[J]. International Journal of Heat & Mass Transfer, 2014, 79:314-323. [17] 梁泽德,王树杰,袁鹏,等. 温差能驱动的垂直升降水下监测平台相变过程数值模拟[J]. 太阳能学报,2015,11:2618-2624. LIANG Z D, WANG S J, YUAN P, et al. Numerical simulation of phase change process for underwater measuring platform moving on a vertical line propelled by ocean thermal energy[J]. Acta Energiae Solaris Sinica,2015,11:2618-2624. [18] 孔巧玲,马捷,夏冬莺. 相变过程体积变化率的实验研究[J]. 太阳能学报,2009,11:1481-1486. KONG Q L, MA J, XIA D Y. Experimental research of volumetric change rate during phase change process[J]. Acta Energiae Solaris Sinica,2009,11:1481-1486. [19] REGIN A F, SOLANKI S C, SAINI J S. Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations[J]. Renewable Energy, 2006, 31(13):2025-2041. [20] KONG Q L, MA J. Phase change analysis of an underwater glider propelled by the ocean’s thermal energy [J]. Journal of Marine Science and Application,2007,16(4):37-43. [21] 李国道. 石蜡基低温固液相变传热工质及其换热特性研究[D]. 秦皇岛:燕山大学, 2013.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-03-04作者简介:杨 锐,硕士研究生. E-mail:[email protected]
更新日期/Last Update: 2017-06-22