|本期目录/Table of Contents|

[1]马 东,陈常连*,黄小雨,等.低浓度碳化硅浆料的分散稳定性及其膜性能研究[J].武汉工程大学学报,2018,40(04):405-409.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 011]
 MA Dong,CHEN Changlian*,HUANG Xiaoyu,et al.Dispersion Stability of Low Concentration SiC Slurry and Its Membrane Properties[J].Journal of Wuhan Institute of Technology,2018,40(04):405-409.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 011]
点击复制

低浓度碳化硅浆料的分散稳定性及其膜性能研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
40
期数:
2018年04期
页码:
405-409
栏目:
材料科学与工程
出版日期:
2018-08-23

文章信息/Info

Title:
Dispersion Stability of Low Concentration SiC Slurry and Its Membrane Properties
文章编号:
20180411
作者:
马 东陈常连*黄小雨梁 欣周诗聪黄志良徐 慢

武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
MA Dong CHEN Changlian* HUANG Xiaoyu LIANG Xin ZHOU ShicongHUANG Zhiliang XU Man

School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
SiC浆料分散剂Zeta电位黏度相对沉降高度孔径分布SiC陶瓷膜
Keywords:
SiC slurrydispersantzeta potential viscosityrelative sedimentation heightpore size distributionSiC ceramic membrane
分类号:
TB321
DOI:
10. 3969/j. issn. 1674?2869. 2018. 04. 011
文献标志码:
A
摘要:

将碳化硅(SiC)粉体与一定量的聚乙二醇(PEG)、四甲基氢氧化铵(TMAH)、羧甲基纤维素钠(CMC-Na)及去离子水和乙醇混合并球磨3 h制备出低浓度SiC浆料,研究了SiC浆料pH值与其Zeta电位对应关系和添加组分变化对浆料分散稳定性的影响。 结果表明,当pH=8.5时,浆料有最大动电位-37.76 mV,当m(TMAH)∶m(SiC)=1.5%、m(CMC-Na)∶m(SiC)=0.4%时,浆料的表观黏度最小为4.31 mPa·s,浆料的相对沉降高度最小,浆料的分散稳定性能较佳。 利用该浆料在多孔碳化硅陶瓷表面进行涂膜并高温烧成后制备了碳化硅膜并对碳化硅膜的显微结构与其孔径进行了分析表征,结果表明该浆料成膜性能良好,SiC膜晶粒周边圆润、堆积均匀,物相单一,膜孔径分布较窄,平均孔径约为1 μm。
Abstract:

The slurry with a low concentration of silicon carbide (SiC) was firstly prepared by mixing SiC powder with polyethylene glycol (PEG),tetramethyl ammonium hydroxide (TMAH),carboxymethyl cellulose sodium (CMC-Na),distilled water and ethonal,and milling for 3 h. The relationship between the pH of SiC slurry and its Zeta potential,as well as effects of the additional components on the dispersion stability of the SiC slurry were then investigated. The results revealed that the maximum Zeta potential was -37.76 mV when the pH was 8.5,and the minimum apparent viscosity was 4.31 mPa·s with m(TMAH)∶m(SiC)=1.5% and m(CMC-Na)∶m(SiC)=0.4%,presenting the smallest relative sedimentation height and the better dispersion stability. By coating SiC slurry on the surface of porous SiC ceramics and sintering at high temperature,the SiC membrane was prepared. Its characterization result showed that the SiC slurry had a good performance in forming membrane,the grains of SiC membrane featureing smooth edges,uniformly accumulation,single phase and a narrow pore size distribution (average pore diameter about 1 μm).

参考文献/References:


[1] SUN G H,DENG X Y,SUN Y S,et al. Preparation and properties of silicon carbide porous ceramic filter membrane [J]. Key Engineering Materials,2015,655:36-40. [2] SHQAU K,MOTTERN M L,DI Y,et al. Preparation and properties of porous [α]-Al2O3 membrane supports [J]. Journal of the American Ceramic Society,2006,89(6):1790-1794. [3] HYUN S,KIM G. Synthesis of ceramic microfiltration membranes for oil/water separation [J]. Separation Science,1997,32(18):2927-2943. [4] AHMAD N A, LEO C P, AHMAD A L. Superhydrophobic alumina membrane by steam impingement:minimum resistance in microfiltration [J]. Separation and Purification Technology,2013,107:187-194. [5] 黄小雨,陈常连,王璀璨,等. 不同烧结助剂对氮化硅结合碳化硅陶瓷支撑体性能的影响[J]. 陶瓷学报,2017,38(5): 767-770. [6] 姜晓锋,张晓临,朱佳,等. 平板陶瓷膜和中空纤维膜处理重金属废水效能对比[J]. 水处理技术,2017,43(3): 82-86,94. [7] TANAKA H. Silicon carbide powder and sintered materials[J]. Journal of the Ceramic Society of Japan,2011,119(1387):218-233. [8] VALES F, REZAKHANLOU R, OLAGNON C. Determination of the fracture mechanical parameters of porous ceramics from microstructure parameters measured by quantitative image analysis [J]. Journal of Materials Science,1999,34(16):4081-4088. [9] SHE J, YANG J F, KONDO N, et al. High-strength porous silicon carbide ceramics by an oxidation-bonding technique [J]. Journal of the American Ceramic Society,2002,85(11):2852-2854. [10] ELYASSI B,SAHIMI M,TSOTSIS T T. Silicon carbide membranes for gas separation applications[J]. Journal of Membrane Science,2007,288(1/2):290-297. [11] SINGH B P,JENA J,BESRA L,et al. Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions [J]. Journal of Nanoparticle Research,2007,9(5):797-806. [12] BENCHABANE A, BEKKOUR K. Rheological properties of carboxymethy cellulose (CMC)solutions [J]. Colloid and Polymer Science,2008,286(10):1173-1180. [13] 唐学原,茹红强. SiC陶瓷浆料流变性能的研究[J]. 厦门大学学报(自然科学版),2004,43 (4):527-530. [14] 徐慢,王昭,王树林,等. 前驱物裂解法低温制备碳化硅陶瓷膜[J]. 硅酸盐通报,2017,36(9):2981- 2986. [15] 吴庭. 非对称碳化硅陶瓷过滤膜的研究[D]. 武汉:武汉工程大学,2016. [16] 梁俊平. 多通道碳化硅多孔陶瓷非对称滤膜的制备和性能研究[D]. 西安:长安大学,2016. [17] 王永红. 新型陶瓷分离膜制备科学基础和性能研究[D]. 合肥:中国科学技术大学,2006. [18] 杨之礼. 纤维素醚基础与应用[M]. 广州:华南理工大学出版社,1990.

相似文献/References:

备注/Memo

备注/Memo:

收稿日期:2018-03-04基金项目:国家自然科学基金(51374155);湖北省技术创新专项重大项目(2016ACA161);湖北省科技支撑计划(2014BCB034)作者简介:马 东,硕士研究生。E-mail:[email protected]*通讯作者:陈常连,博士,副教授。E-mail:[email protected]引文格式:马东,陈常连,黄小雨,等. 低浓度碳化硅浆料的分散稳定性及其膜性能研究[J]. 武汉工程大学学报,2018,40(4):405-409.
更新日期/Last Update: 2018-08-16