[1] LI S,ZHANG D,WANG M,et al. Synthesis and properties of a novel FRET-based ratiometric fluorescent sensor for Cu2+[J]. Journal of Fluorescence,2016,26(3):769-774. [2] NAIRZ M,THEURL I,SWIRSKI F K,et al. “Pumping iron”—how macrophages handle iron at the systemic,microenvironmental,and cellular levels[J]. Pflügers Archiv: European Journal of Physiology,2017,469(3/4):397-418. [3] WANG J, ZHANG D, LIU Y, et al. A N-stablization rhodamine-based fluorescent chemosensor for Fe3+, in aqueous solution and its application in bioimaging[J]. Sensors & Actuators B Chemical,2014,191(2):344-350. [4] MA Y M,HIDER R C. The selective quantification of iron by hexadentate fluorescent probes[J]. Bioorganic & Medicinal Chemistry,2009,17(23):8093-8101. [5] DORNELLES A S, GARCIA V A,LIMA M, et al. mRNA Expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period[J]. Neurochemical Research,2010,35(4):564-571. [6] CRICHTON R R, DEXTER D T, WARD R J. Metal based neurodegenerative diseases-from molecular mechanisms to therapeutic strategies [J]. Coordination Chemistry Reviews,2008,252(10):1189-1199. [7] BENJAMIN S,CHARLES W M,SHAUN D F,et al. A reactivity-based probe of the interacellilar labile ferrous iron pool[J]. Nature Chemical Biology,2016(12):680-685. [8] SHI B, SU Y, ZHANG L L, et al. Nitrogen and phosphorus Co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells[J]. Acs Applied Materials & Interfaces,2016,8(17):10717-10725. [9] TRAOR? D A,EL A G,JACQUAMET L,et al. Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein[J]. Nature Chemical Biology,2009,5(1):53-59. [10] CABON J Y,GIAMARCHI P,LE B A. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry:a comparative study[J]. Analytica Chimica Acta,2010,664(2):114-120. [11] GOUDA A. A new coprecipitation method without carrier element for separation and preconcentration of some metal ions at trace levels in water and food samples[J]. Talanta,2016,146(45):435-441. [12] COPAT C,ARENA G,FIORE M,et al. Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories[J]. Food and Chemical Toxicology,2013,53(3):33-37. [13] LUNVONGSA S, OSHIMA M, MOTOMIZU S. Determination of total and dissolved amount of iron in water samples using catalytic spectrophotometric flow injection analysis[J]. Talanta,2006,68(3):969-973. [14] 朱燕,李晓林,李玉兰,等. 同位素稀释电感耦合等离子体质谱法分析降尘中铂族元素[J]. 分析化学,2011,39(5):695-699. [15] HUANG K, YANG H, ZHOU Z, et al. Multisignal chemosensor for Cr3+ and its application in bioimaging[J]. Organic Letters,2008,10(12):2557-2560. [16] DU P, LIPPARD S J. A highly selective turn-on colorimetric,red fluorescent sensor for detecting mobile zinc in living cells[J]. Inorganic Chemistry,2010,49(23):10753-10755. [17] HU Z Q,FENG Y C,HUANG H Q,et al. Fe3+-selective fluorescent probe based on Rhodamine B and its application in bioimaging[J]. Sensors & Actuators B Chemical,2011,156(1):428-432. [18] 黎俊波,李楠楠,余响林,等. 高选择性铁离子荧光探针的合成及性质研究[J]. 武汉工程大学学报,2010,32(5):11-14. [19] ZHANG Q,LIU X J,HE R C,et al. Development of a fluorescent-type sensor based on rhodamine B for Fe (III) determination [J]. Chemistry Letters,2017,47(2):122-125. [20] 王胜清,申世立,张延如,等. 小分子生物硫醇荧光探针研究进展浅析[J]. 有机化学,2014(9):1717-1729. [21] XU H T,DING H C,LI G,et al. A highly selective fluorescent chemosensor for Fe3+ based on a new diarylethene with a rhodamine 6G unit [J]. RSC Advances,2017,7(47):29827-29834. [22] MENG Q,SU W,HE C,et al. Novel chitosan-based fluorescent materials for the selective detection and adsorption of Fe3+ in water and consequent bio-imaging applications[J]. Talanta,2012,97(16):456-461. [23] SHVARTSMAN M,KIKKERI R,SHANZER A,et al. Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism:biological and clinical implications[J]. American Journal of Physiology Cell Physiology,2007,293(4):1383-1394. [24] YANG Y, GAO C Y, LI B, et al. A rhodamine-based colorimetric and reversible fluorescent chemosensor for selectively detection of Cu2+,and Hg2+ ions[J]. Sensors and Actuators B Chemical,2014,199:121-126.聚吡咯/石墨烯复合水凝胶的制备与性能
[1]刘东,余军霞,黄彪,等.TiO2纳米管降解罗丹明B[J].武汉工程大学学报,2011,(01):15.[doi:10.3969/j.issn.16742869.2011.01.004]
LIU Dong,YU Jun xia,HUANG Biao,et al.TiO2 nanotubes degradation of Rhodamine B[J].Journal of Wuhan Institute of Technology,2011,(05):15.[doi:10.3969/j.issn.16742869.2011.01.004]
[2]冯中营,赵婷婷.水力空化与臭氧联合降解罗丹明B[J].武汉工程大学学报,2012,(8):36.[doi:103969/jissn16742869201208009]
FENG Zhong ying,ZHAO Ting ting.Degradation of rhodamine B by combined use of hydrodynamic cavitation and ozone[J].Journal of Wuhan Institute of Technology,2012,(05):36.[doi:103969/jissn16742869201208009]
[3]王雪如,丁耀彬,唐和清*.CuO/Fe3O4活化过一硫酸盐降解RhB[J].武汉工程大学学报,2018,40(03):273.[doi:10. 3969/j. issn. 1674?2869. 2018. 03. 008]
WANG Xueru,DING Yaobin,TANG Heqing*.Rhodamine B Degradation by CuO/Fe3O4 Activated Peroxymonosulfate[J].Journal of Wuhan Institute of Technology,2018,40(05):273.[doi:10. 3969/j. issn. 1674?2869. 2018. 03. 008]
[4]向春鹏,万成志,殷 霞,等.Pd基催化剂用于选择性氧化苯甲醇合成苯甲醛的研究进展[J].武汉工程大学学报,2019,(05):415.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 002]
XIANG Chunpeng,WAN Chengzhi,YIN Xia,et al.Research Progress in Pd-Based Catalysts for Synthesis of Benzaldehyde by Selective Oxidation of Benzyl Alcohol[J].Journal of Wuhan Institute of Technology,2019,(05):415.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 002]
[5]邓文明,张 胜,江吉周,等.CuS nanotube/g-C3N4异质结的合成及光催化性能[J].武汉工程大学学报,2021,43(01):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
DENG Wenming,ZHANG Sheng,JIANG Jizhou,et al.Synthesis and Photocatalytic Performances of CuS Nanotube/g-C3N4 Heterojunction[J].Journal of Wuhan Institute of Technology,2021,43(05):65.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]