|本期目录/Table of Contents|

[1]李 能,史祖皓,陈星竹,等.插层限域工程制备MXene及其复合材料的研究进展[J].武汉工程大学学报,2019,(01):46-54.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 007]
 LI Neng,SHI Zuhao,CHEN Xingzhu,et al.Advance Progress in Synthesis of MXene and MXene-Based Composites by Intercalation Confinement Engineering[J].Journal of Wuhan Institute of Technology,2019,(01):46-54.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 007]
点击复制

插层限域工程制备MXene及其复合材料的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年01期
页码:
46-54
栏目:
材料科学与工程
出版日期:
2019-03-23

文章信息/Info

Title:
Advance Progress in Synthesis of MXene and MXene-Based Composites by Intercalation Confinement Engineering
文章编号:
20190107
作者:
李 能123史祖皓2陈星竹2郭 飞1
1. 长飞光纤光缆股份有限公司光纤光缆制备技术国家重点实验室,湖北 武汉 430073;2. 武汉理工大学硅酸盐建筑材料国家重点实验室,湖北 武汉 430070;3. 武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北 武汉 430081
Author(s):
LI Neng 123SHI Zuhao 2CHEN Xingzhu 2GUO Fei 1
1. State Key Laboratory of Optical Fibre and Cable Manufacture Technology,Yangtze Optical Fibre and Cable Joint Stock Limited Company,Wuhan 430073, China;2. State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070, China;3. State Key Laboratory of Refractors and Metallurgy,Wuhan University of Science and Technology,Wuhan 430081, China
关键词:
二维材料MXene插层限域工程复合材料能源转换材料
Keywords:
two-dimensional materials MXene intercalation limited engineering composites energy conversion materials
分类号:
TQ127
DOI:
10. 3969/j. issn. 1674?2869. 2019. 01. 007
文献标志码:
A
摘要:
MXene作为一类全新的二维材料(金属碳氮化物的总称),因其本征的纳米层状结构、可调的比表面积、良好的亲水性、优异的导电性和力学性能,使其在可充电电池、超级电容器、光(电)催化剂、透明导电膜、电磁干扰屏蔽和传感器、原油和重金属的吸附剂以及柔性高强度复合材料等众多领域具有广阔的应用前景。近年来,利用插层限域工程制备MXene及其复合材料,是先进功能材料领域的研究热点。主要综述了近几年利用插层反应促进MXene剥离及合成MXene基复合材料的研究进展,比较了不同插层反应合成的MXene及其复合材料的优缺点;同时对于未来MXene及其复合材料领域的发展提出了展望。我们认为MXene及其复合材料的稳定性问题是当前要解决的瓶颈;相信随着人工智能和机器学习技术在材料研究领域的快速发展,MXene材料稳定性问题将会得到解决,并且更多具有良好稳定性的MXene及其复合材料将会被设计和合成出来。
Abstract:
MXene,a new family of two-dimensional transition metal carbides,nitrides,possesses the properties of intrinsic nano-layered structure,easily tunable specific surface area, excellent hydrophilic properties,high electrical conductivity and good mechanical properties. Thus,it was potential to be employed in rechargeable batteries, supercapacitors, optical (electric) catalysts,transparent conductive films,electromagnetic interference shielding and sensors,as well as crude oil and heavy metals adsorbents. Recently,MXene and its composites fabricated by intercalation confinement engineering is a research hotspot in advanced functional materials. In the present paper,we reviewed the synthesis of MXene and its composites by intercalation confinement engineering, and compared their advantages and disadvantages with the different intercalation approaches. Finally,the development of MXene-based composites was also put forward. We think that the stability of MXene-based materials is the key point,which is very important in its applications. With the rapid development of artificial intelligence and machine learning technology applications in materials discoveries,the stability of MXene will be improved,more MXenes and its composites with good stability will be designed and synthesized.

参考文献/References:

[1] XU Y H, WANG X X, ZHANG W L, et al. Recent progress in two-dimensional inorganic quantum dots[J]. Chemical Society Reviews,2018,47(2): 586-625. [2] LI N, CHEN X Z, ONG W J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (Mxenes) [J]. ACS Nano,2017,11(11):10825-10833. [3] LUKATSKAYA M R,MASHTALIR O,REN C E,et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. [4] KORM?NYOS A, Z?LYOMI V, DRUMMOND N D,et al. Spin-orbit coupling,quantum dots,and qubits in monolayer transition metal dichalcogenides[J]. Physical Review X,2014,4(1): 011034(1)-011034(16). [5] BONACCORSO F, COLOMBO L ,YU G, et al. Graphene,related two-dimensional crystals,and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217): 1246501(1)-1246501(9). [6] ONG W J,TAN L L,NG Y H,et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116(12):7159-7329. [7] LONG X,WANG Z L,XIAO S,et al. Transition metal based layered double hydroxides tailored for energy conversion and storage[J]. Materials Today,2016,19(4): 213-226. [8] ZHAO J J, LIU H S, YU Z M, et al. Rise of silicene: a competitive 2D material[J]. Progress in Materials Science,2016,83:24-151. [9] TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews,2017,117(9): 6225-6331. [10] NAGUIB M,KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37): 4248-4253. [11] NAGUIB M,MOCHALIN V N,BARSOUM M W,et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials,2014,26(7): 992-1005. [12] ANASORI B,LUKATSKAYA M R,GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2): 16098(1)-16098(20). [13] XIONG D B,LI X F,BAI Z M,et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small,2018,14(17): 1703419(1)- 1703419(29). [14] GHIDIU M,LUKATSKAYA M R,ZHAO M Q,et al. Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance[J]. Nature,2014,516(7529): 78-81. [15] LIPATOV A, ALHABEB M, LUKATSKAYA M R,et al. Effect of synthesis on quality,electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12): 1600255(1)- 1600255(9). [16] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304): 1137-1140. [17] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7): 2374-2381. [18] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18): 7633-7644. [19] MASHTALIR O,NAGUIB M,MOCHALIN V N,et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4: 1716(1)-1716(7). [20] MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials,2017,29(4): 1632-1640. [21] NAGUIB M,UNOCIC R R,ARMSTRONG B L,et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes"[J]. Dalton Transactions,2015,44(20): 9353-9358. [22] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences,2014,111(47): 16676-16681. [23] BOOTA M,ANASORI B, VOIGT C, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Advanced Materials,2016,28(7): 1517-1522. [24] ZHANG H,WANG L B,CHEN Q,et al. Preparation,mechanical and anti-friction performance of MXene/polymer composites[J]. Materials & Design,2016,92: 682-689. [25] SHAO M M, SHAO Y F, CHAI J W,et al. Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production[J]. Journal of Materials Chemistry A,2017,5(32): 16748-16756. [26] WU X L,HAO L,ZHANG J K,et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. Journal of Membrane Science,2016,515: 175-188. [27] ZHAO M Q,REN C E,LING Z,et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials,2015,27(2): 339-345. [28] YAN J,REN C E,MALESKI K,et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials,2017,27(30): 1701264(1)- 1701264(10). [29] ZHAO X Q, LIU M, CHEN Y, et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(15): 7870-7876. [30] WANG Y,DOU H,WANG J,et al. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors[J]. Journal of Power Sources,2016,327: 221-228. [31] GUO X Q,XIE X Q,CHOI S,et al. Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(24): 12445-12452. [32] ZHAO M Q,TORELLI M,REN C E,et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage[J]. Nano Energy,2016,30: 603-613. [33] AHMED B,ANJUM D H,GOGOTSI Y,et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J]. Nano Energy,2017,34: 249-256. [34] RAN J R, GAO G P, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications,2017,8:13907(1)- 13907(10). [35] WU Y T,NIE P,JIANG J M,et al. MoS2- nanosheet- decorated 2D titanium carbide (MXene) as high- performance anodes for sodium-ion batteries[J]. Chem Electro Chem,2017,4(6): 1560-1565. [36] AHMED B, ANJUM D H, GOGOTSI Y,et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J]. Nano Energy,2017,34: 249-256.

相似文献/References:

[1]王若冲,陈振宇,李厚燊,等.基于MXene气凝胶的微型超级电容器[J].武汉工程大学学报,2021,43(03):288.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
 WANG Ruochong,CHEN Zhenyu,LI Houshen,et al.Micro-Supercapacitor Based on MXene Aerogel[J].Journal of Wuhan Institute of Technology,2021,43(01):288.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
[2]彭 婷,徐金新,张 琪,等.Ti3C2Tx MXene水分散液的稳定性研究[J].武汉工程大学学报,2022,44(06):636.[doi:10.19843/j.cnki.CN42-1779/TQ.202107024]
 PENG Ting,XU Jinxin,ZHANG Qi,et al.Stability of Ti3C2Tx MXene in Aqueous Dispersions[J].Journal of Wuhan Institute of Technology,2022,44(01):636.[doi:10.19843/j.cnki.CN42-1779/TQ.202107024]
[3]李 能,曾宪兵,陈怡君,等.新型二维材料MXene及MBene合成的研究进展[J].武汉工程大学学报,2023,45(01):15.[doi:10.19843/j.cnki.CN42-1779/TQ.202011010]
 LI Neng,ZENG Xianbin,CHEN Yijun,et al.Progress in Synthesis of New Two-Dimensional Materials:MXene and MBene[J].Journal of Wuhan Institute of Technology,2023,45(01):15.[doi:10.19843/j.cnki.CN42-1779/TQ.202011010]
[4]方 龙,张 鹏,喻湘华,等.聚多巴胺/MXene/Cu改性棉织物的制备及其性能[J].武汉工程大学学报,2024,46(02):155.[doi:10.19843/j.cnki.CN42-1779/TQ.202209032]
 FANG Long,ZHANG Peng,YU Xianghua,et al.Preparation and performance of polydopamine/MXene/Cu-modifiedcotton fabric[J].Journal of Wuhan Institute of Technology,2024,46(01):155.[doi:10.19843/j.cnki.CN42-1779/TQ.202209032]
[5]宁佳鑫,邓 勇,李 亮*.MXene及其复合材料的制备与应用研究进展[J].武汉工程大学学报,2022,44(04):371.[doi:10.19843/j.cnki.CN42-1779/TQ. 202103020]
 NING Jiaxin,DENG Yong,LI Liang*.Research Progress in Preparation and Application of MXene and Its Composite Materials[J].Journal of Wuhan Institute of Technology,2022,44(01):371.[doi:10.19843/j.cnki.CN42-1779/TQ. 202103020]

备注/Memo

备注/Memo:
收稿日期:2018-11-05基金项目:国家自然科学基金(11604249);教育部霍英东青年教师基金(161008);湖北省重点研发计划(2017CFB673);长飞光纤光缆制备技术国家重点实验室开放基金(SKLD1602);省部共建耐火材料与冶金国家重点实验室开放基金(G201605)作者简介:李 能,博士,研究员。E-mail: [email protected]引文格式:李能,史祖皓,陈星竹,等. 插层限域工程制备MXene基复合材料的研究进展[J]. 武汉工程大学学报,2019,41(1):46-54.
更新日期/Last Update: 2019-02-18