|本期目录/Table of Contents|

[1]向春鹏,万成志,殷 霞,等.Pd基催化剂用于选择性氧化苯甲醇合成苯甲醛的研究进展[J].武汉工程大学学报,2019,(05):415-423.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 002]
 XIANG Chunpeng,WAN Chengzhi,YIN Xia,et al.Research Progress in Pd-Based Catalysts for Synthesis of Benzaldehyde by Selective Oxidation of Benzyl Alcohol[J].Journal of Wuhan Institute of Technology,2019,(05):415-423.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 002]
点击复制

Pd基催化剂用于选择性氧化苯甲醇合成苯甲醛的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年05期
页码:
415-423
栏目:
化学与化学工程
出版日期:
2021-01-24

文章信息/Info

Title:
Research Progress in Pd-Based Catalysts for Synthesis of Benzaldehyde by Selective Oxidation of Benzyl Alcohol
文章编号:
20190502
作者:
向春鹏 万成志 殷 霞 杜治平*
绿色化工过程教育部重点实验室(武汉工程大学),新型反应器与绿色化学工艺湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
XIANG Chunpeng WAN Chengzhi YIN Xia DU Zhiping*
Key Laboratory for Green Chemical Process (Wuhan Institute of Technology), Ministry of Education; Hubei Key Laboratory of Novel Reactor & Green Chemical Technology(Wuhan Institute of Technology), Wuhan? 430205, China
关键词:
苯甲醇选择性氧化Pd催化剂粒径效应苯甲醛
Keywords:
benzyl alcohol selective oxidation Pd-based catalyst particle size effect benzaldehyde
分类号:
TQ203.2
DOI:
10. 3969/j. issn. 1674?2869. 2019. 05. 002
文献标志码:
A
摘要:
苯甲醛是重要的化工中间体和原料。近年来,以绿色清洁的氧化剂(如空气、氧气)为原料的苯甲醇选择性氧化合成苯甲醛备受关注,而纳米Pd负载催化剂因具有高催化活性和选择性成为该反应的研究重点。主要综述了近年来碳材料、磁性材料和金属氧化物等载体的研究进展,比较了不同制备方法和Pd纳米颗粒的大小、形态对Pd催化剂的活性、选择性和稳定性影响,同时论述了Pd基双金属催化剂研究现状,最后对Pd基催化剂的合成进行了展望。发现将Pd基催化剂应用于苯甲醇选择性合成苯甲醛时,碱性载体、特定的Pd纳米尺寸、绿色的制备方法更为有利;Pd基双金属催化剂具备优异的性能和寿命,是未来的研究方向;绿色的无溶剂合成更有利于实际应用,是未来的发展趋势。
Abstract:
Benzaldehyde is an important chemical intermediate and raw material. In recent years, the selective oxidation of benzaldehyde with the green and clean oxidants (such as air, oxygen) has attracted much attention. Supported nano-Pd catalysts have become the focus of this reaction because of their high catalytic activity and selectivity. In this paper, we mainly reviewed the recent research progress of various supports including carbon, magnetic materials and metal oxides, compared the effects of different preparation methods and the size and morphology of Pd nanoparticles on the activity, selectivity and stability of Pd catalysts, and described the research status of Pd-based bimetallic catalysts. The development of Pd-based catalysts was also prospected. It is found that the specific Pd nanoparticle size, the basic carrier and the green preparation method are more favorable in the selective synthesis of benzaldehyde from benzyl alcohol. The Pd-based bimetallic catalyst will be a hotspot in the future because of the excellent performance and service life. The green solvent-free synthesis will be also the development trend due to the favor in practical application.

参考文献/References:

[1] COTTA R F, DA SILVA ROCHA K A, KOZHEVNIKOVA E F, et al. Coupling of monoterpenic alkenes and alcohols with benzaldehyde catalyzed by silica- supported tungstophosphoric heteropoly acid[J]. Catalysis Today, 2017, 289: 14-19. [2] STEKROVA M, M?KI-ARVELA P, LEINO E, et al. Two-step synthesis of monoterpenoid dioxinols exhibiting analgesic activity from isopulegol and benzaldehyde over heterogeneous catalysts[J]. Catalysis Today, 2017, 279: 56-62. [3] RUSSO D, ONOTRI L, MAROTTA R, et al. Benzaldehyde nitration by mixed acid under homogeneous condition: a kinetic modeling[J]. Chemical Engineering Journal, 2017, 307:1076-1083. [4] WANG L, LI J, DAI W, et al. Facile and efficient gold-catalyzed aerobic oxidative esterification of activated alcohols[J]. Green Chemistry, 2014, 16(4): 2164-2173. [5] CHELUCCI G, BERTA D, FABBRI D, et al. Enantioselective addition of diethylzinc to benzaldehyde in the presence of sulfur-containing pyridine ligands[J]. Tetrahedron: Asymmetry,1998,9(11): 1933-1940. [6] OLAH G A, RASUL G, YORK C, et al. Superacid- catalyzed condensation of benzaldehyde with benzene: study of protonated benzaldehydes and the role of superelectrophilic activation[J]. Journal of the American Chemical Society,1995,117(45):11211- 11214.[7] KULKARNI A A, KALYANI V S, JOSHI R A, et al. Continuous flow nitration of benzaldehyde[J]. Organic Process Research & Development, 2009, 13(5): 999-1002. [8] ARAI M. Chlorination by Sulfuryl Chloride. IV. The effect of substituents in the radical chlorination of benzaldehydes[J]. Bulletin of the Chemical Society of Japan, 1965, 38(2): 252-255. [9] YADAV G D, MEHTA P H. Theoretical and experimental analysis of capsule membrane phase transfer catalysis: selective alkaline hydrolysis of benzyl chloride to benzyl alcohol[J]. Catalysis Letters, 1993, 21(3/4): 391-403. [10] WIEDEMANN J, MARHOLD A, DREISBACH C. Process for preparing fluorinated benzyl alcohols and fluorinated benzaldehydes: US, 6127581[P]. 2000- 10-3. [11] L? J, SHEN Y, PENG L, et al. Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen[J]. Chemical Communications, 2010, 46(32): 5909-5911. [12] XU J, SHANG J K, CHEN Y, et al. Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen[J]. Applied Catalysis A: General, 2017, 542: 380-388. [13] PARTENHEIMER W, GRUSHIN V V. Synthesis of 2, 5-diformylfuran and furan-2, 5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal bromide catalysts[J]. Advanced Synthesis & Catalysis, 2001, 343(1): 102-111. [14] PARTENHEIMER W. The high yield synthesis of benzaldehydes from benzylic alcohols using homogeneously catalyzed aerobic oxidation in acetic acid[J]. Advanced Synthesis & Catalysis, 2006, 348(4/5): 559-568. [15] ADNAN R H, GOLOVKO V B. Benzyl alcohol oxidation using gold catalysts derived from Au8 clusters on TiO2[J]. Catalysis Letters, 2019, 149(2):449-455. [16] DIMITRATOS N, LOPEZ-SANCHEZ J A, MORGAN D, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique[J]. Catalysis Today, 2007, 122(3/4): 317-324. [17] CHEN Y, WANG H, LIU C J, et al. Formation of monometallic Au and Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol[J]. Journal of Catalysis, 2012, 289: 105-117. [18] GUO Z, LIU B, ZHANG Q, et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chemical Society Reviews, 2014, 43(10): 3480-3524. [19] DIMITRATOS N, LOPEZ-SANCHEZ J A, HUTCHINGS G J. Selective liquid phase oxidation with supported metal nanoparticles[J]. Chemical Science, 2012, 3(1): 20-44. [20] SHELDON R A, ARENDS I, DIJKSMAN A. New developments in catalytic alcohol oxidations for fine chemicals synthesis[J]. Catalysis Today, 2000, 57(1/2): 157-166. [21] 吴海杰, 张艳芳, 任国卿, 等. Pd/MC催化剂的制备及其对苯甲醇氧化制备苯甲醛的催化性能[J]. 南京工业大学学报(自然科学版), 2014, 36(4):7-12. [22] 何萍, 张京京, 潘懿. 碳纳米管及其改性材料在催化苯甲醇选择氧化中的应用[J]. 化学试剂, 2018,40(5):34-37. [23] YAN Y, DAI Y, WANG S, et al. Catalytic applications of alkali-functionalized carbon nanospheres and their supported Pd nanoparticles[J]. Applied Catalysis B: Environmental, 2016, 184: 104-118. [24] GUO W, NIU S, JI X, et al. Doping carbon networks with phosphorus for supporting Pd in catalyzing selective oxidation of benzyl alcohol[J]. Journal of Nanoparticle Research, 2018, 20(7): 180. [25] ZHANG P, GONG Y, LI H, et al. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@ N-doped carbon from glucose[J]. Nature Communications, 2013(4): 1593. [26] NIU S, GUO W, LIN T W, et al. Nanoscale Pd supported on 3D porous carbon for enhanced selective oxidation of benzyl alcohol[J]. RSC Advances, 2017, 7(42): 25885-25890. [27] CERDAN K,OUYANG W, COLMENARES J C, et al. Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol[J]. Chemical Engineering Science, 2019, 194: 78-84. [28] LUO J, PENG F, WANG H, et al. Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol[J]. Catalysis Communications, 2013, 39: 44-49. [29] Al BADRAN F, AWDRY S, KOLACZKOWSKI S T. Development of a continuous flow reactor for pharmaceuticals using catalytic monoliths: Pt/C selective oxidation of benzyl alcohol[J]. Catalysis Today, 2013, 216: 229-239. [30] 孙倩, 章明美, 高庆云,等. 功能化碳纳米管负载钯纳米催化剂提高苯甲醇选择性氧化[J]. 化工新型材料, 2013, 41(8):142-144. [31] ZHANG J, WANG Y, JI H, et al. Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho- chloronitrobenzene[J]. Journal of Catalysis, 2005, 229(1): 114-118. [32] LU A H, SCHMIDT W, MATOUSSEVITCH N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst[J]. Angewandte Chemie International Edition, 2004, 43(33): 4303-4306. [33] ZHAO Z , FLORES E M M , ZHOU J , et al. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation[J]. Nano Research, 2019,12(6): 1467-1472. [34] ZHU Y, STUBBS L P, HO F, et al. Magnetic nanocomposites: a new perspective in catalysis[J]. ChemCatChem, 2010, 2(4): 365-374. [35] LI Y, HUANG J, HU X, et al. Heterogeneous Pd catalyst for mild solvent-free oxidation of benzyl alcohol[J]. Journal of Molecular Catalysis A: Chemical, 2016, 425: 61-67. [36] KONG L, WANG C, GONG F, et al. Magnetic core-shell nanostructured palladium catalysts for green oxidation of benzyl alcohol[J]. Catalysis Letters, 2016, 146(7): 1321-1330. [37] WANG X, WU G, GUAN N, et al. Supported Pd catalysts for solvent-free benzyl alcohol selective oxidation: effects of calcination pretreatments and reconstruction of Pd sites[J]. Applied Catalysis B: Environmental, 2012, 115: 7-15. [38] QI B, WANG Y, LOU L L, et al. Solvent-free aerobic oxidation of benzyl alcohol over palladium catalysts supported on MnOx prepared using an adsorption method[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108(2): 519-529. [39] 唐紫蓉, 尹霞, 张燕辉, 等. 一维CeO2纳米管载体对Pd纳米粒子团聚的抑制及催化性能的提高[J]. 催化学报, 2013, 34(6):1123-1127. [40] LU Y M, ZHU H Z, LIU J W, et al. Palladium nanoparticles supported on titanate nanobelts for solvent-free aerobic oxidation of alcohols[J]. ChemCatChem, 2015, 7(24): 4131-4136. [41] CHEN Y, ZHENG H, GUO Z, et al. Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: support composition and structure sensitivity[J]. Journal of catalysis, 2011, 283(1): 34-44. [42] LI F, ZHANG Q, WANG Y. Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles[J]. Applied Catalysis A: General, 2008, 334(1/2): 217-226. [43] CHEN J, ZHANG Q, WANG Y, et al. Size- dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols[J]. Advanced Synthesis & Catalysis, 2008, 350(3): 453-464. [44] GRUNWALDT J D, CARAVATI M, BAIKER A. Oxidic or metallic palladium: which is the active phase in Pd-catalyzed aerobic alcohol oxidation [J]. The Journal of Physical Chemistry B, 2006, 110(51): 25586-25589. [45] QI B, WANG Y, LOU L L, et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41[J]. Journal of Molecular Catalysis A: Chemical, 2013, 370: 95-103. [46] JIANG X, LIU H, LIANG H, et al. Effects of biomolecules on the selectivity of biosynthesized Pd/MgO catalyst toward selective oxidation of benzyl alcohol[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19128-19135. [47] JIANG K, XU K, ZOU S, et al. B-doped Pd catalyst: boosting room-temperature hydrogen production from formic acid-formate solutions[J]. Journal of the American Chemical Society, 2014, 136(13): 4861-4864. [48] CUENYA B R. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects[J]. Thin Solid Films, 2010, 518(12): 3127-3150. [49] CUI G, SHEN P K, MENG H, et al. Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation[J]. Journal of Power Sources, 2011, 196(15): 6125-6130. [50] ZHANG N, DU Y, YIN M, et al. Facile synthesis of supported RuO2·xH2O nanoparticles on Co-Al hydrotalcite for the catalytic oxidation of alcohol: effect of temperature pretreatment[J]. RSC Advances, 2016, 6(55): 49588-49596. [51] KESAVAN L, TIRUVALAM R, AB RAHIM M H, et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles[J]. Science, 2011, 331(6014): 195-199. [52] WANG Z, SHI J, WANG D, et al. Metal-free catalytic oxidation of benzylic alcohols for benzaldehyde[J]. Reaction Chemistry & Engineering, 2019,3(4):507-515. [53] NISHIMURA S, YAKITA Y, KATAYAMA M, et al. The role of negatively charged Au states in aerobic oxidation of alcohols over hydrotalcite supported AuPd nanoclusters[J]. Catalysis Science & Technology, 2013, 3(2): 351-359. [54] HE Q, MIEDZIAK P J, KESAVAN L, et al. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles[J]. Faraday discussions, 2013, 162: 365-378. [55] VILLA A, WANG D, SPONTONI P, et al. Nitrogen functionalized carbon nanostructures supported Pd and Au-Pd NPs as catalyst for alcohols oxidation[J]. Catalysis Today, 2010, 157(1/2/3/4): 89-93. [56] ENACHRE D I, EDWARDS J K, LANDON P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts[J]. Science, 2006, 311(5759): 362-365. [57] LOPEZ-SANCHEZ J A, DIMITRATOS N, MIEDZIAK P, et al. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis[J]. Physical Chemistry Chemical Physics, 2008, 10(14): 1921-1930. [58] WANG H, WANG C, YAN H, et al. Precisely- controlled synthesis of Au@Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol[J]. Journal of Catalysis, 2015, 324: 59-68. [59] DIMITRATOS N, LOPEZ-SANCHEZ J A, MORGAN D, et al. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 5142-5153. [60] ZHAN G, HONG Y, MBAH V T, et al. Bimetallic Au-Pd/MgO as efficient catalysts for aerobic oxidation of benzyl alcohol: a green bio-reducing preparation method[J]. Applied Catalysis A: General, 2012, 439: 179-186. [61] SANKAR M, NOWICKA E, TIRUVALAM R, et al. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles[J]. Chemistry-A European Journal, 2011, 17(23): 6524-6532. [62] WANG D, VILLA A, PORTA F, et al. Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects[J]. The Journal of Physical Chemistry C,2008, 112(23): 8617-8622. [63] MARX S, BAIKER A. Beneficial interaction of gold and palladium in bimetallic catalysts for the selective oxidation of benzyl alcohol[J]. The Journal of Physical Chemistry C, 2009, 113(15): 6191-6201. [64] ENACHE D I, BARKER D, EDWARDS J K, et al. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: effect of Au-Pd ratio on catalytic performance[J]. Catalysis Today, 2007, 122(3/4): 407-411. [65] SILVA T A G, TEIXEIRA-NETO E, L?PEZ N, et al. Volcano-like behavior of Au-Pd core-shell nanoparticles in the selective oxidation of alcohols[J]. Scientific Reports, 2014, 4: 5766. [66] TANG C, ZHANG N, SHAO Q, et al. Rational design of ordered Pd-Pb nanocubes as highly active, selective and durable catalysts for solvent-free benzyl alcohol oxidation[J]. Nanoscale,2019,11: 5145-5150. [67] CHE J, HAO M, YI W, et al. Selective suppression of toluene formation in solvent-free benzyl alcohol oxidation using supported Pd-Ni bimetallic nanoparticles[J]. Chinese Journal of Catalysis, 2017, 38(11): 1870-1879. [68] RAVAT V, NONGWE I, COVILLE N J. N-doped ordered mesoporous carbon supported PdCo nanoparticles for the catalytic oxidation of benzyl alcohol[J]. Microporous and Mesoporous Materials, 2016, 225: 224-231. [69] NISHIMURA S, YOSHIDA N, EBITANI K. Bimetallic PdCu nanoparticle catalyst supported on hydrotalcite for selective aerobic oxidation of benzyl alcohol[J]. MRS Online Proceedings Library Archive. https://www.researchgate . net/publication/276377190_Bimetallic_ PdCu_Nanoparticle_Catalyst_Supported_on_Hydrotalcite_for_Selective_Aerobic_Oxidation_of_Benzyl_Alcohol2015,1760. DOI:10.1557/opl.2015.58.[70] LIOTTA L F, VENEZIA A M, DEGANELLO G, et al. Liquid phase selective oxidation of benzyl alcohol over Pd-Ag catalysts supported on pumice[J]. Catalysis Today, 2001, 66(2/3/4): 271-276. [71] KERESSZEGI C, FERRI D, MALLAT T, et al. Unraveling the surface reactions during liquid-phase oxidation of benzyl alcohol on Pd/Al2O3: an in Situ ATR-IR study[J]. The Journal of Physical Chemistry B, 2005, 109(2): 958-967.

相似文献/References:

[1]陈佳东,熊万利,唐嘉齐,等.NAD-150 超高交联树脂对苯甲醇的吸附行为研究[J].武汉工程大学学报,2017,39(01):19.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 004]
 CHEN Jiadong,XIONG Wanli,TANG Jiaqi,et al.Adsorption Behavior of Benzyl Alcohol on Hyper-Cross Linked NAD-150 Resin[J].Journal of Wuhan Institute of Technology,2017,39(05):19.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 004]

备注/Memo

备注/Memo:
收稿日期:2019-05-25基金项目:国家自然科学基金(21276201);湖北省教育厅科学技术研究计划指导性项目(B201953)作者简介:向春鹏,硕士研究生。E-mail:[email protected]*通讯作者:杜治平,博士,教授。E-mail:[email protected]引文格式:向春鹏, 万成志, 殷霞,等. Pd基催化剂用于选择性氧化苯甲醇合成苯甲醛的研究进展[J]. 武汉工程大学学报,2019,41(5):415-423.
更新日期/Last Update: 2019-10-29