[1] COTTA R F, DA SILVA ROCHA K A, KOZHEVNIKOVA E F, et al. Coupling of monoterpenic alkenes and alcohols with benzaldehyde catalyzed by silica- supported tungstophosphoric heteropoly acid[J]. Catalysis Today, 2017, 289: 14-19. [2] STEKROVA M, M?KI-ARVELA P, LEINO E, et al. Two-step synthesis of monoterpenoid dioxinols exhibiting analgesic activity from isopulegol and benzaldehyde over heterogeneous catalysts[J]. Catalysis Today, 2017, 279: 56-62. [3] RUSSO D, ONOTRI L, MAROTTA R, et al. Benzaldehyde nitration by mixed acid under homogeneous condition: a kinetic modeling[J]. Chemical Engineering Journal, 2017, 307:1076-1083. [4] WANG L, LI J, DAI W, et al. Facile and efficient gold-catalyzed aerobic oxidative esterification of activated alcohols[J]. Green Chemistry, 2014, 16(4): 2164-2173. [5] CHELUCCI G, BERTA D, FABBRI D, et al. Enantioselective addition of diethylzinc to benzaldehyde in the presence of sulfur-containing pyridine ligands[J]. Tetrahedron: Asymmetry,1998,9(11): 1933-1940. [6] OLAH G A, RASUL G, YORK C, et al. Superacid- catalyzed condensation of benzaldehyde with benzene: study of protonated benzaldehydes and the role of superelectrophilic activation[J]. Journal of the American Chemical Society,1995,117(45):11211- 11214.[7] KULKARNI A A, KALYANI V S, JOSHI R A, et al. Continuous flow nitration of benzaldehyde[J]. Organic Process Research & Development, 2009, 13(5): 999-1002. [8] ARAI M. Chlorination by Sulfuryl Chloride. IV. The effect of substituents in the radical chlorination of benzaldehydes[J]. Bulletin of the Chemical Society of Japan, 1965, 38(2): 252-255. [9] YADAV G D, MEHTA P H. Theoretical and experimental analysis of capsule membrane phase transfer catalysis: selective alkaline hydrolysis of benzyl chloride to benzyl alcohol[J]. Catalysis Letters, 1993, 21(3/4): 391-403. [10] WIEDEMANN J, MARHOLD A, DREISBACH C. Process for preparing fluorinated benzyl alcohols and fluorinated benzaldehydes: US, 6127581[P]. 2000- 10-3. [11] L? J, SHEN Y, PENG L, et al. Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen[J]. Chemical Communications, 2010, 46(32): 5909-5911. [12] XU J, SHANG J K, CHEN Y, et al. Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen[J]. Applied Catalysis A: General, 2017, 542: 380-388. [13] PARTENHEIMER W, GRUSHIN V V. Synthesis of 2, 5-diformylfuran and furan-2, 5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal bromide catalysts[J]. Advanced Synthesis & Catalysis, 2001, 343(1): 102-111. [14] PARTENHEIMER W. The high yield synthesis of benzaldehydes from benzylic alcohols using homogeneously catalyzed aerobic oxidation in acetic acid[J]. Advanced Synthesis & Catalysis, 2006, 348(4/5): 559-568. [15] ADNAN R H, GOLOVKO V B. Benzyl alcohol oxidation using gold catalysts derived from Au8 clusters on TiO2[J]. Catalysis Letters, 2019, 149(2):449-455. [16] DIMITRATOS N, LOPEZ-SANCHEZ J A, MORGAN D, et al. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique[J]. Catalysis Today, 2007, 122(3/4): 317-324. [17] CHEN Y, WANG H, LIU C J, et al. Formation of monometallic Au and Pd and bimetallic Au-Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol[J]. Journal of Catalysis, 2012, 289: 105-117. [18] GUO Z, LIU B, ZHANG Q, et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chemical Society Reviews, 2014, 43(10): 3480-3524. [19] DIMITRATOS N, LOPEZ-SANCHEZ J A, HUTCHINGS G J. Selective liquid phase oxidation with supported metal nanoparticles[J]. Chemical Science, 2012, 3(1): 20-44. [20] SHELDON R A, ARENDS I, DIJKSMAN A. New developments in catalytic alcohol oxidations for fine chemicals synthesis[J]. Catalysis Today, 2000, 57(1/2): 157-166. [21] 吴海杰, 张艳芳, 任国卿, 等. Pd/MC催化剂的制备及其对苯甲醇氧化制备苯甲醛的催化性能[J]. 南京工业大学学报(自然科学版), 2014, 36(4):7-12. [22] 何萍, 张京京, 潘懿. 碳纳米管及其改性材料在催化苯甲醇选择氧化中的应用[J]. 化学试剂, 2018,40(5):34-37. [23] YAN Y, DAI Y, WANG S, et al. Catalytic applications of alkali-functionalized carbon nanospheres and their supported Pd nanoparticles[J]. Applied Catalysis B: Environmental, 2016, 184: 104-118. [24] GUO W, NIU S, JI X, et al. Doping carbon networks with phosphorus for supporting Pd in catalyzing selective oxidation of benzyl alcohol[J]. Journal of Nanoparticle Research, 2018, 20(7): 180. [25] ZHANG P, GONG Y, LI H, et al. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@ N-doped carbon from glucose[J]. Nature Communications, 2013(4): 1593. [26] NIU S, GUO W, LIN T W, et al. Nanoscale Pd supported on 3D porous carbon for enhanced selective oxidation of benzyl alcohol[J]. RSC Advances, 2017, 7(42): 25885-25890. [27] CERDAN K,OUYANG W, COLMENARES J C, et al. Facile mechanochemical modification of g-C3N4 for selective photo-oxidation of benzyl alcohol[J]. Chemical Engineering Science, 2019, 194: 78-84. [28] LUO J, PENG F, WANG H, et al. Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol[J]. Catalysis Communications, 2013, 39: 44-49. [29] Al BADRAN F, AWDRY S, KOLACZKOWSKI S T. Development of a continuous flow reactor for pharmaceuticals using catalytic monoliths: Pt/C selective oxidation of benzyl alcohol[J]. Catalysis Today, 2013, 216: 229-239. [30] 孙倩, 章明美, 高庆云,等. 功能化碳纳米管负载钯纳米催化剂提高苯甲醇选择性氧化[J]. 化工新型材料, 2013, 41(8):142-144. [31] ZHANG J, WANG Y, JI H, et al. Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho- chloronitrobenzene[J]. Journal of Catalysis, 2005, 229(1): 114-118. [32] LU A H, SCHMIDT W, MATOUSSEVITCH N, et al. Nanoengineering of a magnetically separable hydrogenation catalyst[J]. Angewandte Chemie International Edition, 2004, 43(33): 4303-4306. [33] ZHAO Z , FLORES E M M , ZHOU J , et al. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation[J]. Nano Research, 2019,12(6): 1467-1472. [34] ZHU Y, STUBBS L P, HO F, et al. Magnetic nanocomposites: a new perspective in catalysis[J]. ChemCatChem, 2010, 2(4): 365-374. [35] LI Y, HUANG J, HU X, et al. Heterogeneous Pd catalyst for mild solvent-free oxidation of benzyl alcohol[J]. Journal of Molecular Catalysis A: Chemical, 2016, 425: 61-67. [36] KONG L, WANG C, GONG F, et al. Magnetic core-shell nanostructured palladium catalysts for green oxidation of benzyl alcohol[J]. Catalysis Letters, 2016, 146(7): 1321-1330. [37] WANG X, WU G, GUAN N, et al. Supported Pd catalysts for solvent-free benzyl alcohol selective oxidation: effects of calcination pretreatments and reconstruction of Pd sites[J]. Applied Catalysis B: Environmental, 2012, 115: 7-15. [38] QI B, WANG Y, LOU L L, et al. Solvent-free aerobic oxidation of benzyl alcohol over palladium catalysts supported on MnOx prepared using an adsorption method[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108(2): 519-529. [39] 唐紫蓉, 尹霞, 张燕辉, 等. 一维CeO2纳米管载体对Pd纳米粒子团聚的抑制及催化性能的提高[J]. 催化学报, 2013, 34(6):1123-1127. [40] LU Y M, ZHU H Z, LIU J W, et al. Palladium nanoparticles supported on titanate nanobelts for solvent-free aerobic oxidation of alcohols[J]. ChemCatChem, 2015, 7(24): 4131-4136. [41] CHEN Y, ZHENG H, GUO Z, et al. Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: support composition and structure sensitivity[J]. Journal of catalysis, 2011, 283(1): 34-44. [42] LI F, ZHANG Q, WANG Y. Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles[J]. Applied Catalysis A: General, 2008, 334(1/2): 217-226. [43] CHEN J, ZHANG Q, WANG Y, et al. Size- dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols[J]. Advanced Synthesis & Catalysis, 2008, 350(3): 453-464. [44] GRUNWALDT J D, CARAVATI M, BAIKER A. Oxidic or metallic palladium: which is the active phase in Pd-catalyzed aerobic alcohol oxidation [J]. The Journal of Physical Chemistry B, 2006, 110(51): 25586-25589. [45] QI B, WANG Y, LOU L L, et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41[J]. Journal of Molecular Catalysis A: Chemical, 2013, 370: 95-103. [46] JIANG X, LIU H, LIANG H, et al. Effects of biomolecules on the selectivity of biosynthesized Pd/MgO catalyst toward selective oxidation of benzyl alcohol[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19128-19135. [47] JIANG K, XU K, ZOU S, et al. B-doped Pd catalyst: boosting room-temperature hydrogen production from formic acid-formate solutions[J]. Journal of the American Chemical Society, 2014, 136(13): 4861-4864. [48] CUENYA B R. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects[J]. Thin Solid Films, 2010, 518(12): 3127-3150. [49] CUI G, SHEN P K, MENG H, et al. Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation[J]. Journal of Power Sources, 2011, 196(15): 6125-6130. [50] ZHANG N, DU Y, YIN M, et al. Facile synthesis of supported RuO2·xH2O nanoparticles on Co-Al hydrotalcite for the catalytic oxidation of alcohol: effect of temperature pretreatment[J]. RSC Advances, 2016, 6(55): 49588-49596. [51] KESAVAN L, TIRUVALAM R, AB RAHIM M H, et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles[J]. Science, 2011, 331(6014): 195-199. [52] WANG Z, SHI J, WANG D, et al. Metal-free catalytic oxidation of benzylic alcohols for benzaldehyde[J]. Reaction Chemistry & Engineering, 2019,3(4):507-515. [53] NISHIMURA S, YAKITA Y, KATAYAMA M, et al. The role of negatively charged Au states in aerobic oxidation of alcohols over hydrotalcite supported AuPd nanoclusters[J]. Catalysis Science & Technology, 2013, 3(2): 351-359. [54] HE Q, MIEDZIAK P J, KESAVAN L, et al. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles[J]. Faraday discussions, 2013, 162: 365-378. [55] VILLA A, WANG D, SPONTONI P, et al. Nitrogen functionalized carbon nanostructures supported Pd and Au-Pd NPs as catalyst for alcohols oxidation[J]. Catalysis Today, 2010, 157(1/2/3/4): 89-93. [56] ENACHRE D I, EDWARDS J K, LANDON P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts[J]. Science, 2006, 311(5759): 362-365. [57] LOPEZ-SANCHEZ J A, DIMITRATOS N, MIEDZIAK P, et al. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis[J]. Physical Chemistry Chemical Physics, 2008, 10(14): 1921-1930. [58] WANG H, WANG C, YAN H, et al. Precisely- controlled synthesis of Au@Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol[J]. Journal of Catalysis, 2015, 324: 59-68. [59] DIMITRATOS N, LOPEZ-SANCHEZ J A, MORGAN D, et al. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 5142-5153. [60] ZHAN G, HONG Y, MBAH V T, et al. Bimetallic Au-Pd/MgO as efficient catalysts for aerobic oxidation of benzyl alcohol: a green bio-reducing preparation method[J]. Applied Catalysis A: General, 2012, 439: 179-186. [61] SANKAR M, NOWICKA E, TIRUVALAM R, et al. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles[J]. Chemistry-A European Journal, 2011, 17(23): 6524-6532. [62] WANG D, VILLA A, PORTA F, et al. Bimetallic gold/palladium catalysts: correlation between nanostructure and synergistic effects[J]. The Journal of Physical Chemistry C,2008, 112(23): 8617-8622. [63] MARX S, BAIKER A. Beneficial interaction of gold and palladium in bimetallic catalysts for the selective oxidation of benzyl alcohol[J]. The Journal of Physical Chemistry C, 2009, 113(15): 6191-6201. [64] ENACHE D I, BARKER D, EDWARDS J K, et al. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: effect of Au-Pd ratio on catalytic performance[J]. Catalysis Today, 2007, 122(3/4): 407-411. [65] SILVA T A G, TEIXEIRA-NETO E, L?PEZ N, et al. Volcano-like behavior of Au-Pd core-shell nanoparticles in the selective oxidation of alcohols[J]. Scientific Reports, 2014, 4: 5766. [66] TANG C, ZHANG N, SHAO Q, et al. Rational design of ordered Pd-Pb nanocubes as highly active, selective and durable catalysts for solvent-free benzyl alcohol oxidation[J]. Nanoscale,2019,11: 5145-5150. [67] CHE J, HAO M, YI W, et al. Selective suppression of toluene formation in solvent-free benzyl alcohol oxidation using supported Pd-Ni bimetallic nanoparticles[J]. Chinese Journal of Catalysis, 2017, 38(11): 1870-1879. [68] RAVAT V, NONGWE I, COVILLE N J. N-doped ordered mesoporous carbon supported PdCo nanoparticles for the catalytic oxidation of benzyl alcohol[J]. Microporous and Mesoporous Materials, 2016, 225: 224-231. [69] NISHIMURA S, YOSHIDA N, EBITANI K. Bimetallic PdCu nanoparticle catalyst supported on hydrotalcite for selective aerobic oxidation of benzyl alcohol[J]. MRS Online Proceedings Library Archive. https://www.researchgate . net/publication/276377190_Bimetallic_ PdCu_Nanoparticle_Catalyst_Supported_on_Hydrotalcite_for_Selective_Aerobic_Oxidation_of_Benzyl_Alcohol2015,1760. DOI:10.1557/opl.2015.58.[70] LIOTTA L F, VENEZIA A M, DEGANELLO G, et al. Liquid phase selective oxidation of benzyl alcohol over Pd-Ag catalysts supported on pumice[J]. Catalysis Today, 2001, 66(2/3/4): 271-276. [71] KERESSZEGI C, FERRI D, MALLAT T, et al. Unraveling the surface reactions during liquid-phase oxidation of benzyl alcohol on Pd/Al2O3: an in Situ ATR-IR study[J]. The Journal of Physical Chemistry B, 2005, 109(2): 958-967.
[1]陈佳东,熊万利,唐嘉齐,等.NAD-150 超高交联树脂对苯甲醇的吸附行为研究[J].武汉工程大学学报,2017,39(01):19.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 004]
CHEN Jiadong,XIONG Wanli,TANG Jiaqi,et al.Adsorption Behavior of Benzyl Alcohol on Hyper-Cross Linked NAD-150 Resin[J].Journal of Wuhan Institute of Technology,2017,39(05):19.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 004]