[1] SELWITZ R H, ISMAIL A I, PITTS N B. Dental caries[J]. Lancet, 2007, 369(9555): 51-59.[2] MARCHISIO O, ESPOSITO M R, GENOVESI A. Salivary pH level and bacterial plaque evaluation in orthodontic patients treated with recaldent (R) products[J]. International Journal of Dental Hygiene, 2010, 8(3): 232-236.[3] HASAN S, DANISHUDDIN M, ADIL M, et al. Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism[J]. Plos One, 2012, 7(7): e40319.[4] KOUIDHI B, AL QURASHI Y M, CHAIEB K. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment[J]. Microbial Pathogenesis, 2015, 80: 39-49.[5] WANG Y F, WANG X Q, JIANG W T, et al. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans[J]. Journal of Oral Microbiology, 2018, 10(1): 1442089(1)- 1442089(11).[6] KHAN S T, AL-KHEDHAIRY A A, MUSARRAT J. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review[J]. Journal of Nanoparticle Research, 2015, 17(6): 276-292.[7] LAITEERAPONG A, REICHL F X, YANG Y, et al. Induction of DNA double-strand breaks in human gingival fibroblasts by eluates from titanium dioxide modified glass ionomer cements[J]. Dental Materials, 2018, 34(2): 282-287.[8] ESTEBAN FLOREZ F L,HIERS R D,LARSON P,et al. Antibacterial dental adhesive resins containing nitrogen- doped titanium dioxide nanoparticles[J]. Mater Science & Engineering C-Materials for Biological Applications, 2018, 93: 931-943.[9] VARGAS-REUS M A, MEMARZADEH K, HUANG J, et al. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens[J]. International Journal of Antimicrobial Agents, 2012, 40(2): 135-139.[10] PAN Y, NEUSS S, LEIFERT A, et al. Size-dependent cytotoxicity of gold nanoparticles[J]. Small, 2007, 3(11): 1941-1949.[11] MANIKANDAN V, VELMURUGAN P, PARK J H, et al. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens[J]. 3 Biotech, 2017, 7: 72.[12] KARUNAKARAN G, JAGATHAMBAL M, GUSEV A, et al. Nitrobacter sp. extract mediated biosynthesis of Ag2O NPs with excellent antioxidant and antibacterial potential for biomedical application[J]. IET Nanobiotechnology, 2016, 10(6): 425-430.[13] GAO A, HANG R Q, HUANG X B, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts[J]. Biomaterials, 2014, 35(13): 4223-4235.[14] LU Z, RONG K F, LI J, et al. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria[J]. Journal of Materials Science-Materials in Medicine, 2013, 24(6): 1465-1471.[15] LIU B K, MU L L, HAN B, et al. Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation[J]. Applied Surface Science,2017, 396: 1596-1603.[16] ZENG Z P, HE X, TAN B Q, et al. Titanium oxide nanotubes embedded with silver dioxide nanoparticles for staphylococcus aureus infections after prosthetic joint replacement in animal models[J]. International Journal of Clinical and Experimental Medicine, 2018, 11(7): 7392-7399.[17] 马璐璐,吴杰,吕中. 纳米氧化铜与庆大霉素协同抗MRSA作用的研究[J]. 武汉工程大学学报,2016,38(3):226-230.[18] 牛卉,何欣雨,王睿,等. 螯合剂联合美罗培南对耐碳青霉烯铜绿假单胞菌和肺炎克雷伯菌的体外抗菌活性研究[J]. 中国临床药理学杂志,2019,35(10):971-974.[19] LIU Y C, XU Y J, SONG Q H, et al. Anti-biofilm activities from bergenia crassifolia leaves against Streptococcus mutans[J]. Frontiers in Microbiology, 2017, 8: 1738.