[1]沈 斌,赵重远.基于KNN算法的财政预算监督方法[J].武汉工程大学学报,2020,42(01):108-112.[doi:10.19843/j.cnki.CN42-1779/TQ.201909032]
SHEN Bin,ZHAO Zhongyuan.Financial Budget Supervision Method Based on K-Nearest NeighborAlgorithm[J].Journal of Wuhan Institute of Technology,2020,42(01):108-112.[doi:10.19843/j.cnki.CN42-1779/TQ.201909032]
点击复制
《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]
- 卷:
-
42
- 期数:
-
2020年01期
- 页码:
-
108-112
- 栏目:
-
机电与信息工程
- 出版日期:
-
2021-01-25
文章信息/Info
- Title:
-
Financial Budget Supervision Method Based on K-Nearest NeighborAlgorithm
- 文章编号:
-
1674 - 2869(2020)01 - 0108 - 05
- 作者:
-
沈 斌; 赵重远
-
武汉工程大学电气信息学院,湖北 武汉 430205
- Author(s):
-
SHEN Bin; ZHAO Zhongyuan
-
School of Electrical and Information Engineering, Wuhan Institute of Technology,Wuhan 430205, China
-
- 关键词:
-
报文; KNN算法; 预算绩效; 特征值
- Keywords:
-
message; K-nearest neighbor algorithm; budget performance; eigenvalues
- 分类号:
-
TP391
- DOI:
-
10.19843/j.cnki.CN42-1779/TQ.201909032
- 文献标志码:
-
A
- 摘要:
-
为了解决预算单位不按照预算绩效使用财政资金的问题,提出一种基于K最近邻分类算法(KNN)的财政预算监督方法。首先利用报文得到初始结果集,然后改进传统K最近邻分类(T-KNN)算法,弱化训练集的噪声数据并对其特征值加权,最后将训练集分层得到报文分类结果。改进的K最近邻分类算法(I-KNN)使报文分类检测的真正类率(TPR)与真负类率(TNR)分别达到了89.67%和88.42%,且分类时间较短。实验结果表明,本文提出的方法为报文分类应用于预算绩效考核中提供了新思路。
- Abstract:
-
To solve the problem that budget units do not use financial funds according to budget performance,we proposed a financial budget monitoring method based on K-nearest neighbor classification algorithm. Firstly, an initial result was obtained based on messages, then the traditional K-nearest neighbor classification algorithm was improved, in which the noise data of the training set were weakened and the eigenvalues were weighted. Finally, the training set was divided into multiple layers to obtain the message classification results. The true negative rate and true negative rate of our approach in the message classification detection task reach 89.67% and 88.42%, respectively. Apart from that, our technique is also time efficient. Experimental results show that the proposed method provides a new idea for the application of message classification in budget performance appraisal.
参考文献/References:
[1] AHA D W, KIBLER D, ALBERT M K. Instance-based learning algorithms[J]. Machine Learning, 1991, 6(1):37-66. [2] 鲍舒婷, 孙丽萍, 郑孝遥,等. 基于共享近邻相似度的密度峰聚类算法[J]. 计算机应用, 2018, 38(6):81-87. [3] GABRILOVICH E, MARKOVITCH S. Wikipedia- based semantic interpretation for natural language processing[J]. Journal of Artificial Intelligence Research, 2009, 34(4):443-498. [4] LUDEWIG M, JANNACH D. Evaluation of session- based recommendation algorithms[J]. User Modeling and User-Adapted Interaction, 2018, 28(4/5):331-390. [5] ZHANG S C, LI X L, ZONG M, et al. Efficient kNN classification with different numbers of nearest neighbors. [J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(5):1774-1785. [6] CALVANESE D, GIACOMO G D, LENZERINI M. Representing and reasoning on xml documents: a description logic approach. [J]. Journal of Logic & Computation, 2018, 9(3):295-318. [7] LAI D H, CHEN Y W, LUO X Y, et al. Age estimation with dynamic age range[J]. Multimedia Tools & Applications, 2017, 76(5):6551-6573. [8] DU M J, DING S F, JIA H J. Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J]. Knowledge-Based Systems, 2016(99):135-145. [9] 马春来,单洪,马涛. 一种基于簇中心点自动选择策略的密度峰值聚类算法[J]. 计算机科学, 2015, 43(7):255-258. [10] 吴健, 崔志明, 时玉杰,等. 基于局部密度构造相似矩阵的谱聚类算法[J]. 通信学报, 2013(3):14-22. [11] GELER Z,KURBALIJA V, RADOVANOVI M, et al. Comparison of different weighting schemes for thekNN classifier on time-series data[J]. Knowledge and Information Systems, 2016, 48(2):331-378. [12] HU B, LI X W, SUN S T, et al. Attention recognition in eeg-based affective learning research using CFS+KNN algorithm[J]. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2018, 15(2):38-45. [13] 王焘, 张文博, 徐继伟,等. 云环境下基于统计监测的分布式软件系统故障检测技术研究[J]. 计算机学报, 2017, 40(2):397-413. [14] 耿丽娟,李星毅. 用于大数据分类的KNN算法研究[J]. 计算机应用研究,2014,31(5):1342-1344. [15] KIM S K, KIRCHNER E A. Handling few Training data: classifier transfer between different types of error-related potentials[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2015, 24(3):320-332.
备注/Memo
- 备注/Memo:
-
收稿日期:2019-09-25基金项目:国家留学基金委(201408420066);湖北省自然科学基金(2013CFA049)作者简介:沈 斌,博士,副教授。E—mail:[email protected]引文格式:沈斌,赵重远. 基于KNN算法的财政预算监督方法[J]. 武汉工程大学学报,2020,42(1):108-112.
更新日期/Last Update:
2020-06-09