|本期目录/Table of Contents|

[1]孙宇君,吕 中*.季铵盐类聚合物增强纳米抗菌材料性能的研究进展[J].武汉工程大学学报,2021,43(01):12-20.[doi:10.19843/j.cnki.CN42-1779/TQ.202010024]
 SUN Yujun,Lü Zhong*.Reserch Progress of Properties Enhanced by Quaternary Ammonium Salt Polymers of Nano-Antibacterial Materials[J].Journal of Wuhan Institute of Technology,2021,43(01):12-20.[doi:10.19843/j.cnki.CN42-1779/TQ.202010024]
点击复制

季铵盐类聚合物增强纳米抗菌材料性能的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年01期
页码:
12-20
栏目:
化学与化学工程
出版日期:
2021-02-28

文章信息/Info

Title:
Reserch Progress of Properties Enhanced by Quaternary Ammonium Salt Polymers of Nano-Antibacterial Materials
文章编号:
1674 - 2869(2021)01 - 0012 - 09
作者:
孙宇君吕 中*
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
SUN Yujun Lü Zhong*
School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
季铵盐类聚合物纳米复合材料抗菌性能分散性生物相容性
Keywords:
quaternary ammonium salt polymers nanocomposite antibacterial property dispersity biocompatibility
分类号:
TQ460.6
DOI:
10.19843/j.cnki.CN42-1779/TQ.202010024
文献标志码:
A
摘要:
季铵盐类聚合物由于具有正电荷,可以通过静电作用吸附于细菌细胞膜,破坏细菌细胞膜结构,因而在抗菌方面具有独特应用。近年来,将季铵盐类聚合物与纳米抗菌材料结合以提高材料的抗菌性能取得一系列的研究成果。该文综述了近年来季铵盐类聚合物修饰无机纳米抗菌材料后在增强材料分散性、稳定性、抗菌活性以及降低毒性方面的研究进展,举例说明了常见的季铵盐类聚合物修饰前后对无机纳米材料抗菌活性的影响,并分析了作用机理。最后,对季铵盐类聚合物增强纳米抗菌材料性能的应用及未来发展方向进行了展望。
Abstract:
Due to the positive charge, quaternary ammonium salt polymer can be adsorbed onto the bacterial cell membrane by electrostatic action, destroying the structure of the bacterial cell membrane, which has a unique application in antibacterial field. In recent years, a series of research have been carried out in the combination of quaternary ammonium salt polymers and nano antibacterial materials to improve the antibacterial properties of the materials. This review focuses on recent research progress in enhancing dispersion, stability, antibacterial activity and reducing toxicity of inorganic nano-antibacterial materials modified by quaternary ammonium salt polymers. Examples were given to illustrate the effects of common quaternary ammonium salts on the antibacterial activity of nanomaterials, and analyze the enhancement mechanism. Finally,the applications of quaternary ammonium salt polymers to enhance the properties of nano-antibacterial materials in the future were prospected.

参考文献/References:

1] KAAKOUSH N O, NATALIA C O R, MITCHELL H M, et al. Global epidemiology of campylobacter infection[J]. Clinical Microbiology Reviews, 2015, 28(3): 687-720.[2] BROWN E D, WRIGHT G D.?Antibacterial drug discovery in the resistance era[J]. Nature, 2016, 529(7586): 336-343.?[3] ANGEL S, FREDERILSEN K N. Challenges in achieving patient participation: a review of how patient participation is addressed in empirical studies[J].?International Journal of Nursing Studies, 2015, 52(9): 1525-1538.[4] HOLMES A H, MOORE L S P, SUNDSFJORD A, et al. Understanding the mechanisms and drivers of antimicrobial resistance[J]. The Lancet, 2016, 387(10014): 176-187.[5] GELBAND H, LAXMINARAYAN R. Tackling antimicrobial resistance at global and local scales[J]. Trends in Microbiology, 2015, 23(9): 524-526.[6] DING X K, WANG A Z, TONG W, et al. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria[J]. Small, 2019, 15(20): e1900999.[7] YANEZ-MACIAS R, MUNOZ-BONILLA A, DE JESUS-TELLEZ, M A, et al. Polymers combinations of antimicrobial polymers with nanomaterials and bioactives to improve biocidal therapies[J].Polymers, 2019, 11(11):1789.[8] JENNINGS M C,MINBIOLE K P, WUEST W M. Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance[J]. ACS Infectious Diseases, 2015, 1(7): 288-303.[9] 梁敬时, 曾佳铭, 李俊杰,等. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9):1263-1282.[10] ALEXANDRA M B, MARTA F G. Polymeric materials with antimicrobial activity [J]. Progress in Polymer Science, 2012, 37(2): 281-339.[11] CHANAWANNO K, CHANTRAPROMMA S, ANANTAPONG T, et al. Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: pyridinium and quinolinium stilbene benzenesulfonates[J]. European Journal of Medicinal Chemistry, 2010, 45(9): 4199-4208.[12] MAKVANDI P, JAMALEDIN R, JABBARI M, et al. Antibacterial quaternary ammonium compounds in dental materials: a systematic review[J]. Dental Materials, 2018, 34(6): 851-867.[13] CHEMBURU S, CORBITT T, ISTA L K, et al. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids[J]. Langmuir, 2008, 24: 11053-11062.[14] 曲彦儒,张昊雷, 沈传凯, 等. 新型多功能季铵化抗菌材料的制备与应用[J].表面技术,2019,48(7): 220-228.[15] MURATA H, KOEPSEL R R, MATYJASZEWSKI K, et al. Permanent, non-leaching antibacterial surfaces-2:how high density cationic surfaces kill bacterial cells[J]. Biomaterials, 2007, 28(32): 4870-4879.[16] KANGO S, KALIA S, CELLI A, et al. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review[J]. Progress in Polymer Science, 2013, 38(8): 1232-1261. [17] BAHRAMI A, DELSHADI R, JAFARI S M, et al. Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies[J]. Trends in Food Science & Technology, 2020, 99: 217-228.[18] LI X S, BAI H T, YANG Y C, et al. Supramolecular antibacterial materials for combatting antibiotic resistance[J]. Advance Materials, 2019, 31(5): e1805092.[19] CAO W W, PENG X F, CHEN X Q, et al. Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity [J]. Journal of Materials Science, 2016, 52(4): 1856-1867.[20] CHEN X Q, HU B J, XING X D, et al. Preparation of grafted cationic polymer/silver chloride modified cellulose fibers and their antibacterial properties[J]. Journal of Applied Polymer Science, 2015,132(25): 42092.[21] CAO W W, ZHANG Y, XIAO Y H, et al. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites[J]. Journal of Materials Science: Materials in Medicine, 2017, 28(7): 103.[22] YOU J, XIANG M X, HU H Z, et al. Aqueous synthesis of silver nanoparticles stabilized by cationic cellulose and their catalytic and antibacterial activities[J]. RSC Advances, 2013, 3(42): 19319.[23] ZAHRAN M, MAREI A H. Innovative natural polymer metal nanocomposites and their antimicrobial activity[J].International Journal of Biological Macromolecules, 2019, 136: 586-596[24] JOO Y T, JUNG K H, KIM M J, et al. Preparation of antibacterial PDMAEMA-functionalized multi-walled carbon nanotube via atom transfer radical polymerization[J]. Journal of Applied Polymer Science, 2013, 127(3): 1508-1518.[25] CAO W W, WANG X, LI Q, et al. Designing of membrane-active nano-antimicrobials based on cationic copolymer functionalized nanodiamond: Influence of hydrophilic segment on antimicrobial activity and selectivity[J]. Materials Science & Engineering C: Materials for Biological Applications, 2018, 92: 307-316.[26] SONG J Y, KONG H Y, JANG Y, et al. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(2): 651-656.[27] GAO D G, DUAN X Y, CHEN C, et al. Synthesis of polymer quaternary ammonium salt containing epoxy group/nano ZnO long-acting antimicrobial coating for cotton fabrics[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10560-10567.[28] LIN M, ZHANG X G,WANG Y N,et al. Multivalent polymer-Au nanocomposites with cationic surfaces displaying enhanced antimicrobial activity[J]. Polymer Chemistry, 2014, 5(8): 3038-3044.[29] LIN M, LU Z T, ZHANG X G, et al. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15813-15821.[30] WANG X Y, ZHU S X, LIU L, et al. Flexible antibacterial film based on conjugated polyelectrolyte/silver nanocomposites[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9051-9058.[31] WANG Y, JONES E M, TANG Y L, et al. Effect of polymer chain length on membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers[J]. Langmuir, 2011, 27(17): 10770-10775.[32] SONG J Y, JUNG Y J, LEE I K, et al. Fabrication of pDMAEMA-coated silica nanoparticles and their enhanced antibacterial activity[J]. Journal of Colloid and Interface Science, 2013, 407: 205-209.[33] MAHLTIG B, SOLTMANN U, HAASE H. Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications [J]. Materials Science & Engineering C: Materials for Biological Applications, 2013, 33(2): 979-983.[34] SIERRA-FERNANDEZ A, ROSA-GARCíA S C, YA?EZ-MACíAS R, et al. Sol-gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: a comparative study of their antifungal activity in partially quaternized p(DMAEMA) nanocomposite films [J]. Journal of Sol-Gel Science and Technology, 2019, 89(1): 310-321.[35] LU P, XU J B, SUN Y M, et al. Cationic polycarbonate-grafted superparamagnetic nanopar-ticles with synergistic dual-modality antimicrobial activity [J]. Biomaterials Science, 2016, 4(5): 871-879.[36] OZAY O, AKCALI A, OTKUN M T, et al. P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials [J]. Colloids and Surfaces B: Biointerfaces, 2010, 9(2): 460-466.[37] WANG J Y, SUI M H, MA Z F, et al. Antibacterial performance of polymer quaternary ammonium salt-capped silver nanoparticles on Bacillus subtilis in water [J]. RSC Advances, 2019, 9(44): 25667-25676.[38] LI Z, LEE D, SHENG X X, et al. Two-level antibacterial coating with both release-killing and contact-killing capabilities [J]. Langmuir, 2006, 22(24): 9820-9823.[39] RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology, 2015, 10(9): 817-823.[40] YANG Y C, CAI Z G, HUANG Z H, et al. Antimicrobial cationic polymers: from structural design to functional control[J]. Polymer Journal, 2017, 50(1): 33-44.[41] UPPU D S S M, KONAI M M, BAUL U, et al. Isosteric substitution in cationic-amphiphilic polymers reveals an important role for hydrogen bonding in bacterial membrane interactions[J]. Chemical Science, 2016, 7(7): 4613-4623.[42] GU J, CLEGG J R, HEERSEMA L A, et al. Optimization of cationic nanogel PEGylation to achieve mammalian cytocompatibility with limited loss of Gram-Negative bactericidal activity[J]. Biomacromolecules, 2020, 21(4): 1528-1538.[43] SALAJKOVA S, SRAMEK M, MALINAK D, et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity[J]. Journal of Biophotonics, 2019, 12(12): e201900024.[44] SIMONCIC B, TOMSIC B. Structures of novel antimicrobial agents for textiles-A review[J]. Textile Research Journal, 2010, 80(16): 1721-1737.[45] TANG Y N, SUN H, QIN Z, et al. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property [J]. Chemical Engineering Journal,2020,398: 125575.[46] LI H R, BAO H Q, BOK K X, et al. High durability and low toxicity antimicrobial coatings fabricated by quaternary ammonium silane copolymers[J]. Biomaterials Science, 2016, 4(2): 299-309.[47] YAGCI M B, BOLCA S, HEUTS J P A, et al. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds[J]. Progress in Organic Coatings, 2010, 72(3): 343-347.[48] YIN J J, WAHID F, ZHANG Q, et al. Facile incorporation of silver nanoparticles into quaternized poly(2-(dimethylamino) ethyl methacrylate) brushes as bifunctional antibacterial coatings[J]. Macromo-lecular Materials and Engineering, 2017, 302(6): 1700069.[49] KANG C K, KIM S S, KIM S, et al. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts[J]. Carbohydrate Polymers, 2016, 151: 1012-1018.[50] KRUK T, GOLDA-CEPA M, SZCZEPANOWICZ K, et al. Nanocomposite multifunctional poly-electrolyte thin films with copper nanoparticles as the antimicrobial coatings[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 112-118.

相似文献/References:

[1]张宏,林志东*,许涛.纳米氧化钛基气敏材料的合成与气敏性能研究[J].武汉工程大学学报,2009,(07):69.
 ZHANG Hong,LIN Zhi dong,XU Tao.Preparation and gas sensitivity of materials based on nanotitanium dioxide[J].Journal of Wuhan Institute of Technology,2009,(01):69.
[2]李念,彭梦,李宛怡,等.Cu2O/累托石纳米复合材料的制备及XRD表征[J].武汉工程大学学报,2010,(01):87.
 LI Nian,PENG Meng,LI Wan yi,et al.Preparation and XRD characterization of Cu2O/ REC nanocomposite[J].Journal of Wuhan Institute of Technology,2010,(01):87.
[3]杨赛兰,钟昕,秦帆,等.氮氧化物的催化还原研究与展望[J].武汉工程大学学报,2012,(2):6.
 YANG Sai\|lan,ZHONG Xin,QIN Fan,et al.Research progress and prospects in catalytic reduction of nitrogen oxides[J].Journal of Wuhan Institute of Technology,2012,(01):6.

备注/Memo

备注/Memo:
收稿日期:2020-10-23基金项目:国家自然科学基金(21371139);武汉工程大学研究生教育创新基金(CX2019197)作者简介:孙宇君,硕士研究生。E-mail:[email protected]*通讯作者:吕 中,博士,教授。E-mail:[email protected]引文格式:孙宇君,吕中. 季铵盐类聚合物增强纳米抗菌材料性能的研究进展[J]. 武汉工程大学学报,2021,43(1):12-20.
更新日期/Last Update: 2021-03-12