1] KAAKOUSH N O, NATALIA C O R, MITCHELL H M, et al. Global epidemiology of campylobacter infection[J]. Clinical Microbiology Reviews, 2015, 28(3): 687-720.[2] BROWN E D, WRIGHT G D.?Antibacterial drug discovery in the resistance era[J]. Nature, 2016, 529(7586): 336-343.?[3] ANGEL S, FREDERILSEN K N. Challenges in achieving patient participation: a review of how patient participation is addressed in empirical studies[J].?International Journal of Nursing Studies, 2015, 52(9): 1525-1538.[4] HOLMES A H, MOORE L S P, SUNDSFJORD A, et al. Understanding the mechanisms and drivers of antimicrobial resistance[J]. The Lancet, 2016, 387(10014): 176-187.[5] GELBAND H, LAXMINARAYAN R. Tackling antimicrobial resistance at global and local scales[J]. Trends in Microbiology, 2015, 23(9): 524-526.[6] DING X K, WANG A Z, TONG W, et al. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria[J]. Small, 2019, 15(20): e1900999.[7] YANEZ-MACIAS R, MUNOZ-BONILLA A, DE JESUS-TELLEZ, M A, et al. Polymers combinations of antimicrobial polymers with nanomaterials and bioactives to improve biocidal therapies[J].Polymers, 2019, 11(11):1789.[8] JENNINGS M C,MINBIOLE K P, WUEST W M. Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance[J]. ACS Infectious Diseases, 2015, 1(7): 288-303.[9] 梁敬时, 曾佳铭, 李俊杰,等. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9):1263-1282.[10] ALEXANDRA M B, MARTA F G. Polymeric materials with antimicrobial activity [J]. Progress in Polymer Science, 2012, 37(2): 281-339.[11] CHANAWANNO K, CHANTRAPROMMA S, ANANTAPONG T, et al. Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: pyridinium and quinolinium stilbene benzenesulfonates[J]. European Journal of Medicinal Chemistry, 2010, 45(9): 4199-4208.[12] MAKVANDI P, JAMALEDIN R, JABBARI M, et al. Antibacterial quaternary ammonium compounds in dental materials: a systematic review[J]. Dental Materials, 2018, 34(6): 851-867.[13] CHEMBURU S, CORBITT T, ISTA L K, et al. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids[J]. Langmuir, 2008, 24: 11053-11062.[14] 曲彦儒,张昊雷, 沈传凯, 等. 新型多功能季铵化抗菌材料的制备与应用[J].表面技术,2019,48(7): 220-228.[15] MURATA H, KOEPSEL R R, MATYJASZEWSKI K, et al. Permanent, non-leaching antibacterial surfaces-2:how high density cationic surfaces kill bacterial cells[J]. Biomaterials, 2007, 28(32): 4870-4879.[16] KANGO S, KALIA S, CELLI A, et al. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review[J]. Progress in Polymer Science, 2013, 38(8): 1232-1261. [17] BAHRAMI A, DELSHADI R, JAFARI S M, et al. Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies[J]. Trends in Food Science & Technology, 2020, 99: 217-228.[18] LI X S, BAI H T, YANG Y C, et al. Supramolecular antibacterial materials for combatting antibiotic resistance[J]. Advance Materials, 2019, 31(5): e1805092.[19] CAO W W, PENG X F, CHEN X Q, et al. Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity [J]. Journal of Materials Science, 2016, 52(4): 1856-1867.[20] CHEN X Q, HU B J, XING X D, et al. Preparation of grafted cationic polymer/silver chloride modified cellulose fibers and their antibacterial properties[J]. Journal of Applied Polymer Science, 2015,132(25): 42092.[21] CAO W W, ZHANG Y, XIAO Y H, et al. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites[J]. Journal of Materials Science: Materials in Medicine, 2017, 28(7): 103.[22] YOU J, XIANG M X, HU H Z, et al. Aqueous synthesis of silver nanoparticles stabilized by cationic cellulose and their catalytic and antibacterial activities[J]. RSC Advances, 2013, 3(42): 19319.[23] ZAHRAN M, MAREI A H. Innovative natural polymer metal nanocomposites and their antimicrobial activity[J].International Journal of Biological Macromolecules, 2019, 136: 586-596[24] JOO Y T, JUNG K H, KIM M J, et al. Preparation of antibacterial PDMAEMA-functionalized multi-walled carbon nanotube via atom transfer radical polymerization[J]. Journal of Applied Polymer Science, 2013, 127(3): 1508-1518.[25] CAO W W, WANG X, LI Q, et al. Designing of membrane-active nano-antimicrobials based on cationic copolymer functionalized nanodiamond: Influence of hydrophilic segment on antimicrobial activity and selectivity[J]. Materials Science & Engineering C: Materials for Biological Applications, 2018, 92: 307-316.[26] SONG J Y, KONG H Y, JANG Y, et al. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(2): 651-656.[27] GAO D G, DUAN X Y, CHEN C, et al. Synthesis of polymer quaternary ammonium salt containing epoxy group/nano ZnO long-acting antimicrobial coating for cotton fabrics[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10560-10567.[28] LIN M, ZHANG X G,WANG Y N,et al. Multivalent polymer-Au nanocomposites with cationic surfaces displaying enhanced antimicrobial activity[J]. Polymer Chemistry, 2014, 5(8): 3038-3044.[29] LIN M, LU Z T, ZHANG X G, et al. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15813-15821.[30] WANG X Y, ZHU S X, LIU L, et al. Flexible antibacterial film based on conjugated polyelectrolyte/silver nanocomposites[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9051-9058.[31] WANG Y, JONES E M, TANG Y L, et al. Effect of polymer chain length on membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers[J]. Langmuir, 2011, 27(17): 10770-10775.[32] SONG J Y, JUNG Y J, LEE I K, et al. Fabrication of pDMAEMA-coated silica nanoparticles and their enhanced antibacterial activity[J]. Journal of Colloid and Interface Science, 2013, 407: 205-209.[33] MAHLTIG B, SOLTMANN U, HAASE H. Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications [J]. Materials Science & Engineering C: Materials for Biological Applications, 2013, 33(2): 979-983.[34] SIERRA-FERNANDEZ A, ROSA-GARCíA S C, YA?EZ-MACíAS R, et al. Sol-gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: a comparative study of their antifungal activity in partially quaternized p(DMAEMA) nanocomposite films [J]. Journal of Sol-Gel Science and Technology, 2019, 89(1): 310-321.[35] LU P, XU J B, SUN Y M, et al. Cationic polycarbonate-grafted superparamagnetic nanopar-ticles with synergistic dual-modality antimicrobial activity [J]. Biomaterials Science, 2016, 4(5): 871-879.[36] OZAY O, AKCALI A, OTKUN M T, et al. P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials [J]. Colloids and Surfaces B: Biointerfaces, 2010, 9(2): 460-466.[37] WANG J Y, SUI M H, MA Z F, et al. Antibacterial performance of polymer quaternary ammonium salt-capped silver nanoparticles on Bacillus subtilis in water [J]. RSC Advances, 2019, 9(44): 25667-25676.[38] LI Z, LEE D, SHENG X X, et al. Two-level antibacterial coating with both release-killing and contact-killing capabilities [J]. Langmuir, 2006, 22(24): 9820-9823.[39] RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology, 2015, 10(9): 817-823.[40] YANG Y C, CAI Z G, HUANG Z H, et al. Antimicrobial cationic polymers: from structural design to functional control[J]. Polymer Journal, 2017, 50(1): 33-44.[41] UPPU D S S M, KONAI M M, BAUL U, et al. Isosteric substitution in cationic-amphiphilic polymers reveals an important role for hydrogen bonding in bacterial membrane interactions[J]. Chemical Science, 2016, 7(7): 4613-4623.[42] GU J, CLEGG J R, HEERSEMA L A, et al. Optimization of cationic nanogel PEGylation to achieve mammalian cytocompatibility with limited loss of Gram-Negative bactericidal activity[J]. Biomacromolecules, 2020, 21(4): 1528-1538.[43] SALAJKOVA S, SRAMEK M, MALINAK D, et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity[J]. Journal of Biophotonics, 2019, 12(12): e201900024.[44] SIMONCIC B, TOMSIC B. Structures of novel antimicrobial agents for textiles-A review[J]. Textile Research Journal, 2010, 80(16): 1721-1737.[45] TANG Y N, SUN H, QIN Z, et al. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property [J]. Chemical Engineering Journal,2020,398: 125575.[46] LI H R, BAO H Q, BOK K X, et al. High durability and low toxicity antimicrobial coatings fabricated by quaternary ammonium silane copolymers[J]. Biomaterials Science, 2016, 4(2): 299-309.[47] YAGCI M B, BOLCA S, HEUTS J P A, et al. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds[J]. Progress in Organic Coatings, 2010, 72(3): 343-347.[48] YIN J J, WAHID F, ZHANG Q, et al. Facile incorporation of silver nanoparticles into quaternized poly(2-(dimethylamino) ethyl methacrylate) brushes as bifunctional antibacterial coatings[J]. Macromo-lecular Materials and Engineering, 2017, 302(6): 1700069.[49] KANG C K, KIM S S, KIM S, et al. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts[J]. Carbohydrate Polymers, 2016, 151: 1012-1018.[50] KRUK T, GOLDA-CEPA M, SZCZEPANOWICZ K, et al. Nanocomposite multifunctional poly-electrolyte thin films with copper nanoparticles as the antimicrobial coatings[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 112-118.
[1]张宏,林志东*,许涛.纳米氧化钛基气敏材料的合成与气敏性能研究[J].武汉工程大学学报,2009,(07):69.
ZHANG Hong,LIN Zhi dong,XU Tao.Preparation and gas sensitivity of materials based on nanotitanium dioxide[J].Journal of Wuhan Institute of Technology,2009,(01):69.
[2]李念,彭梦,李宛怡,等.Cu2O/累托石纳米复合材料的制备及XRD表征[J].武汉工程大学学报,2010,(01):87.
LI Nian,PENG Meng,LI Wan yi,et al.Preparation and XRD characterization of Cu2O/ REC nanocomposite[J].Journal of Wuhan Institute of Technology,2010,(01):87.
[3]杨赛兰,钟昕,秦帆,等.氮氧化物的催化还原研究与展望[J].武汉工程大学学报,2012,(2):6.
YANG Sai\|lan,ZHONG Xin,QIN Fan,et al.Research progress and prospects in catalytic reduction of nitrogen oxides[J].Journal of Wuhan Institute of Technology,2012,(01):6.