|本期目录/Table of Contents|

[1]邓文明,张 胜,江吉周,等.CuS nanotube/g-C3N4异质结的合成及光催化性能[J].武汉工程大学学报,2021,43(01):65-70.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
 DENG Wenming,ZHANG Sheng,JIANG Jizhou,et al.Synthesis and Photocatalytic Performances of CuS Nanotube/g-C3N4 Heterojunction[J].Journal of Wuhan Institute of Technology,2021,43(01):65-70.[doi:10.19843/j.cnki.CN42-1779/TQ.202002017]
点击复制

CuS nanotube/g-C3N4异质结的合成及光催化性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年01期
页码:
65-70
栏目:
材料科学与工程
出版日期:
2021-02-28

文章信息/Info

Title:
Synthesis and Photocatalytic Performances of CuS Nanotube/g-C3N4 Heterojunction
文章编号:
1674 - 2869(2021)01 - 0065 - 06
作者:
邓文明张 胜江吉周邹 菁*
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
DENG WenmingZHANG ShengJIANG JizhouZOU Jing*
School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
CuS nanotube/g-C3N4异质结化学共沉淀法光电催化活性罗丹明B
Keywords:
CuS nanotube/g-C3N4heterojunctionchemical co-precipitation methodphotocatalytic activityrhodamine B
分类号:
O614.81
DOI:
10.19843/j.cnki.CN42-1779/TQ.202002017
文献标志码:
A
摘要:
以CuCl2·2H2O、SC(NH22和g-C3N4纳米片作为前驱体,在室温下采用简单的共沉淀法成功地制备了CuS nanotube/g-C3N4异质结。对碱源、g-C3N4加入顺序和反应时间等合成条件对CuS nanotube/g-C3N4异质结的光催化性能的影响进行了较系统的研究。结果表明:碱源是合成的关键因素。以Na2S·9H2O为碱源兼硫源,制备的CuS nanotube/g-C3N4异质结的光吸收边带明显红移,禁带宽度(Eg)和荧光强度明显降低,且光电流响应值为0.095 6 μA/cm2,相对于bulk g-C3N4提高了约3.1倍。将其用于光催化降解罗丹明B(RhB),45 min内RhB降解率约达100%,其降解速率相对于bulk g-C3N4提高了约47.6倍,这些结果说明CuS nanotube/g-C3N4具有较高的光电催化活性。并提出了CuS nanotube/g-C3N4异质结在光催化过程中载流子迁移转化的机理。
Abstract:
The CuS nanotube/g-C3N4 heterojunction was successfully prepared by simple co-precipitation method at room temperature with CuCl2·2H2O,SC(NH22 and g-C3N4 nanosheets as precursors. The effects of synthesis conditions such as alkali source,addition sequence of g-C3N4 and reaction time on the photocatalytic performances of the CuS nanotube/g-C3N4 heterojunction was systematically investigated. The results showed that the alkali source is the key factor during the synthesis. With Na2S·9H2O as the alkali and sulfur source,the light absorption sideband of the CuS nanotube/g-C3N4 heterojunction is significantly red-shifted,band gap(Eg) and fluorescence intensity are significantly reduced, while the photocurrent-response value is 0.095 6 μA/cm2,which is about 3.1 times higher than that of bulkg-C3N4. It was used for photocatalytic degradation of rhodamine B(RhB),and the degradation rate of RhB reaches about 100% within 45 min,which is about 47.6 times higher than that of bulk g-C3N4,indicating that the CuS nanotube/g-C3N4 heterojunction has higher photoelectrocatalysis activity. The mechanism of carrier migration and transformation of CuS nanotube/g-C3N4 heterojunction in the photocatalytic process was proposed.

参考文献/References:

[1] ONG W J,TAN L L,NG Y H,et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116(12):7159-7329.[2] PEYMANFAR R, KARIMI J, FALLAHI R. Novel,promising,and broadband microwave-absorbing nanocomposite based on the graphite-like carbon nitride/CuS [J]. Journal of Applied Polymer Science,2020,137(9):48430:1-9.[3] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir,2009,25(17):10397-10401.[4] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science,2017,391:72-123.[5] LI Y H, GU M L, SHI T,et al. Carbon vacancy in C3N4 nanotube:electronic structure,photocatalysis mechanism and highly enhanced activity [J]. Applied Catalysis B:Environmental,2020,262:118281:1-11.[6] MALATO S, FERNáNDEZ-IBá?EZ P,MALDONADO M I,et al. Decontamination and disinfection of water by solar photocatalysis:recent overview and trends [J]. Catalysis Today,2009,147(1):1-59.[7] AKPAN U G,HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:a review [J]. Journal of Hazardous Materials,2009,170(2/3):520-529.[8] CAO S W,YU J G. g-C3N4-based photocatalysts for hydrogen generation [J]. The Journal of Physical Chemistry Letters,2014,5(12):2101-2107.[9] XIONG T,CEN W L,ZHANG Y X,et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis [J]. ACS Catalysis,2016,6(4):2462-2472.[10] XU J,WANG G X,FAN J J,et al. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells [J]. Journal of Power Sources,2015,274:77-84.[11] ZHANG X L,ZHENG C,GUO S S,et al. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite [J]. Analytical Chemistry,2014,86(7):3426-3434.[12] DONG F,ZHAO Z W, XIONG T, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis [J]. ACS Applied Materials & Interfaces,2013,5(21):11392-11401.[13] WANG Y Y, YANG W J, CHEN X J, et al. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer [J]. Applied Catalysis B:Environmental,2018,220:337-347.[14] LI J,ZHANG M,LI Q Y,et al. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst [J]. Applied Surface Science,2017,391:184-193.[15] XIONG T,CEN W L,ZHANG Y X,et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis [J]. ACS Catalysis,2016,6(4):2462-2472.[16] ANSARI M S, BANIK A, QURESHI M. Morphological tuning of photo-booster g-C3N4 with higher surface area and better charge transfers for enhanced power conversion efficiency of quantum dot sensitized solar cells [J]. Carbon,2017,121:90-105.[17] HUSSAIN S,PATIL S A,MEMON A A,et al. CuS/WS2 and CuS/MoS2 heterostructures for high performance counter electrodes in dye-sensitized solar cells [J]. Solar Energy,2018,171:122-129.[18] 申丽华,李晓霞.CuS纳米粒子的电化学发光行为研究[J].西安科技大学学报,2011,31(1):96-99,106.[19] 张转芳,唐林,孙立,等.CuS/GO纳米复合材料的制备及光催化降解性能[J].精细化工,2019,36(2):237-242.[20] LIU J, LIU Y, WANG W, et al. Component reconstitution-driven photoelectrochemical sensor for sensitive detection of Cu2+ based on advanced CuS/CdS p-n junction [J]. Science China(Chemistry),2019,62(12):1725-1731.[21] MA Y L, ZHANG J, WANG Y, et al. Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions [J]. Journal of Advanced Research,2019,16:135-143.[22] CHEN X,LI H K,WU Y X,et al. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance [J]. Journal of Colloid and Interface Science,2016,476:132-143.[23] KHAN A,ALAM U,RAZA W,et al. One-pot,self-assembled hydrothermal synthesis of 3D flower-like CuS/g-C3N4 composite with enhanced photocatalytic activity under visible-light irradiation [J]. Journal of Physics and Chemistry of Solids,2018,115:59-68.[24] RAMESHBABU R, RAVI P, SATHISH M. Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting [J]. Chemical Engineering Journal,2019,360:1277-1286.

相似文献/References:

[1]安盼龙,赵瑞娟,许丽萍,等.内建电场对纳构半导体功函数的调制[J].武汉工程大学学报,2011,(04):50.[doi:10.3969/j.issn.16742869.2011.04.013]
 AN Pan long,ZHAO Rui juan,XU Li ping,et al.Modulation on work function of nanosemiconductor material by builtin electric field[J].Journal of Wuhan Institute of Technology,2011,(01):50.[doi:10.3969/j.issn.16742869.2011.04.013]
[2]邹 菁,彭俊敏,柳子涵,等.硫化锌量子点/类石墨相氮化碳异质结的制备及应用[J].武汉工程大学学报,2015,37(04):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
 ,,et al.Synthesis and application of zinc sulfide quantum dots/graphite-like carbon nitride heterojunction[J].Journal of Wuhan Institute of Technology,2015,37(01):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
[3]方俊雄,邓文明,江吉周,等.β-FeOOH/U-g-C3N4异质结的制备及光电催化析氢性能[J].武汉工程大学学报,2020,42(02):165.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
 FANG Junxiong,DENG Wenming,JIANG Jizhou,et al.Preparation of β-FeOOH/U-g-C3N4 Heterojunction and Their Performances in Photoelectrocatalytic Hydrogen Evolution Reaction[J].Journal of Wuhan Institute of Technology,2020,42(01):165.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
[4]王雪燕,袁嘉泽,何禄英*.C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究[J].武汉工程大学学报,2024,46(05):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]
 WANG Xueyan,YUAN Jiaze,HE Luying*.Photocatalytic degradation of methylene blue by C-vacancy andg-C3N4/BiOCl heterojunction [J].Journal of Wuhan Institute of Technology,2024,46(01):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]

备注/Memo

备注/Memo:
收稿日期:2020-01-27基金项目:国家自然科学基金(21471122);武汉工程大学第十一届研究生教育创新基金(CX2019193)作者简介:邓文明,硕士研究生。E-mail:[email protected]*通讯作者:邹 菁,博士,教授。E-mail: [email protected]引文格式:邓文明,张胜,江吉周,等. CuS nanotube/g-C3N4异质结的合成及光催化性能[J]. 武汉工程大学学报,2021,43(1):65-70.
更新日期/Last Update: 2021-02-07