[1] ONG W J,TAN L L,NG Y H,et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116(12):7159-7329.[2] PEYMANFAR R, KARIMI J, FALLAHI R. Novel,promising,and broadband microwave-absorbing nanocomposite based on the graphite-like carbon nitride/CuS [J]. Journal of Applied Polymer Science,2020,137(9):48430:1-9.[3] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir,2009,25(17):10397-10401.[4] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science,2017,391:72-123.[5] LI Y H, GU M L, SHI T,et al. Carbon vacancy in C3N4 nanotube:electronic structure,photocatalysis mechanism and highly enhanced activity [J]. Applied Catalysis B:Environmental,2020,262:118281:1-11.[6] MALATO S, FERNáNDEZ-IBá?EZ P,MALDONADO M I,et al. Decontamination and disinfection of water by solar photocatalysis:recent overview and trends [J]. Catalysis Today,2009,147(1):1-59.[7] AKPAN U G,HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:a review [J]. Journal of Hazardous Materials,2009,170(2/3):520-529.[8] CAO S W,YU J G. g-C3N4-based photocatalysts for hydrogen generation [J]. The Journal of Physical Chemistry Letters,2014,5(12):2101-2107.[9] XIONG T,CEN W L,ZHANG Y X,et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis [J]. ACS Catalysis,2016,6(4):2462-2472.[10] XU J,WANG G X,FAN J J,et al. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells [J]. Journal of Power Sources,2015,274:77-84.[11] ZHANG X L,ZHENG C,GUO S S,et al. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite [J]. Analytical Chemistry,2014,86(7):3426-3434.[12] DONG F,ZHAO Z W, XIONG T, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis [J]. ACS Applied Materials & Interfaces,2013,5(21):11392-11401.[13] WANG Y Y, YANG W J, CHEN X J, et al. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer [J]. Applied Catalysis B:Environmental,2018,220:337-347.[14] LI J,ZHANG M,LI Q Y,et al. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst [J]. Applied Surface Science,2017,391:184-193.[15] XIONG T,CEN W L,ZHANG Y X,et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis [J]. ACS Catalysis,2016,6(4):2462-2472.[16] ANSARI M S, BANIK A, QURESHI M. Morphological tuning of photo-booster g-C3N4 with higher surface area and better charge transfers for enhanced power conversion efficiency of quantum dot sensitized solar cells [J]. Carbon,2017,121:90-105.[17] HUSSAIN S,PATIL S A,MEMON A A,et al. CuS/WS2 and CuS/MoS2 heterostructures for high performance counter electrodes in dye-sensitized solar cells [J]. Solar Energy,2018,171:122-129.[18] 申丽华,李晓霞.CuS纳米粒子的电化学发光行为研究[J].西安科技大学学报,2011,31(1):96-99,106.[19] 张转芳,唐林,孙立,等.CuS/GO纳米复合材料的制备及光催化降解性能[J].精细化工,2019,36(2):237-242.[20] LIU J, LIU Y, WANG W, et al. Component reconstitution-driven photoelectrochemical sensor for sensitive detection of Cu2+ based on advanced CuS/CdS p-n junction [J]. Science China(Chemistry),2019,62(12):1725-1731.[21] MA Y L, ZHANG J, WANG Y, et al. Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions [J]. Journal of Advanced Research,2019,16:135-143.[22] CHEN X,LI H K,WU Y X,et al. Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance [J]. Journal of Colloid and Interface Science,2016,476:132-143.[23] KHAN A,ALAM U,RAZA W,et al. One-pot,self-assembled hydrothermal synthesis of 3D flower-like CuS/g-C3N4 composite with enhanced photocatalytic activity under visible-light irradiation [J]. Journal of Physics and Chemistry of Solids,2018,115:59-68.[24] RAMESHBABU R, RAVI P, SATHISH M. Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting [J]. Chemical Engineering Journal,2019,360:1277-1286.
[1]安盼龙,赵瑞娟,许丽萍,等.内建电场对纳构半导体功函数的调制[J].武汉工程大学学报,2011,(04):50.[doi:10.3969/j.issn.16742869.2011.04.013]
AN Pan long,ZHAO Rui juan,XU Li ping,et al.Modulation on work function of nanosemiconductor material by builtin electric field[J].Journal of Wuhan Institute of Technology,2011,(01):50.[doi:10.3969/j.issn.16742869.2011.04.013]
[2]邹 菁,彭俊敏,柳子涵,等.硫化锌量子点/类石墨相氮化碳异质结的制备及应用[J].武汉工程大学学报,2015,37(04):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
,,et al.Synthesis and application of zinc sulfide quantum dots/graphite-like carbon nitride heterojunction[J].Journal of Wuhan Institute of Technology,2015,37(01):12.[doi:10. 3969/j. issn. 1674—2869. 2015. 04. 003]
[3]方俊雄,邓文明,江吉周,等.β-FeOOH/U-g-C3N4异质结的制备及光电催化析氢性能[J].武汉工程大学学报,2020,42(02):165.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
FANG Junxiong,DENG Wenming,JIANG Jizhou,et al.Preparation of β-FeOOH/U-g-C3N4 Heterojunction and Their Performances in Photoelectrocatalytic Hydrogen Evolution Reaction[J].Journal of Wuhan Institute of Technology,2020,42(01):165.[doi:10.19843/j.cnki.CN42-1779/TQ.202001021]
[4]王雪燕,袁嘉泽,何禄英*.C空位协同g-C3N4/BiOCl异质结对亚甲基蓝光催化降解性能的研究[J].武汉工程大学学报,2024,46(05):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]
WANG Xueyan,YUAN Jiaze,HE Luying*.Photocatalytic degradation of methylene blue by C-vacancy andg-C3N4/BiOCl heterojunction [J].Journal of Wuhan Institute of Technology,2024,46(01):490.[doi:10.19843/j.cnki.CN42-1779/TQ.202311012]