[1] MOAN J, PENG Q. An outline of the hundred-year history of PDT[J]. Anticancer Research, 2003, 23(5A):3591-3600.[2] 陈越,郑军,谭潇. 光动力疗法在肿瘤治疗中的研究进展[J]. 实用医学杂志,2019,35(16):2517-2521.
[3] LYNDE C, VENDER R, BOURCIER M, et al. Clinical features of external genital warts.[J].Journal of Cutaneous Medicine & Surgery, 2013, 17(6):55-60.
[4] RECHTMAN E, CIULLA T A, CRISWELL M H, et al. An update on photodynamic therapy in age-related macular degeneration[J]. Expert Opinion on Pharmacotherapy, 2002, 3(7):931-938.
[5] BERNS M W, COFFEY J, WILE A, et al. Response of psoriasis to red laser light (630 nm) following systemic injection of hematoporphyrin derivative[J]. Lasers in Surgery and Medicine, 1984, 4(1):73-77.
[6] 张玲琳,吴赟,张云凤,等. 不同光源(红光VS强脉冲光)光动力治疗寻常痤疮:半脸、随机、前瞻性研究[J]. 中国激光医学杂志,2018,27(2):97.
[7] DAI T, HUANG Y Y, HAMBLIN M R. Photodynamic therapy for localized infections-State of the art[J]. Photodiagnosis and Photodynamics Therapy, 2009, 6(3/4):170-188.
[8] 郑哲,张国龙,王秀丽. 单线态氧在光动力治疗中的作用机制及检测方法[J]. 中国激光医学杂志,2019,28(4):219-223.
[9] CASTANO A P, DEMIDOVA T N, HAMBLIN M R. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death[J]. Photodiagnosis and Photodynamic Therapy, 2005, 2(1):1-23.
[10] LAN M H, ZHAO S J, LIU W M, et al. Photosensitizers for photodynamic therapy[J]. Advanced Healthcare Materials,2019,8(13): 1900132.[11] HOPE-SEYLER F. Beitrage zur kenntniss des blutes des menscheu und der wirbelthiere das hamatin[J]. Tubinger Med Chem Untersuchungen,1871(4): 523-533.
[12] MEYER-BETZ F. Untersuchungen über die biologische (photodynamische) wirkung des H?matoporphyrins und anderer derivate des blut-und gallenfarbstoffs[J]. Deutsches Archiv fur Klinische Medizin, 1913, 112: 476-503.
[13] POLICARD A. Etude sur les aspects offerts par des tumeurs experimentales examinees a la limiere de wood[J]. Biologue Comptes Rendus,1924,91: 1423.
[14] SCHWARTZ S, ABSOLON K, VERMUND H. Some relationships of porphyrins, X-rays and tumors[J]. University of Minnesota Medical Bulletin, 1955, 27: 7-8.
[15] ALLISON R R, SIBATA C H. Oncologic photodynamic therapy photosensitizers: a clinical review[J]. Photodiagnosis and Photodynamic Therapy, 2010, 7(2): 61-75.
[16] ABRAHAMSE H, HAMBLIN M R. New photosensi-tizers for photodynamic therapy[J]. Biochemical Journal, 2016, 473(4):347-364.
[17] 许德余,殷祥生. 肿瘤光化学诊治新药癌光啉(PsD-007)的研究[J]. 中国医药工业杂志,1989,20(10):440-446.
[18] 顾瑛,李峻亨. 血啉甲醚用于光动力疗法治疗鲜红斑痣的初步临床研究[J]. 中国激光医学杂志,1996(4):17-20.
[19] 王韬,聂双发,薛军,等. 5-ALA-PDT诱导人结肠癌HT-29细胞凋亡的机制研究[J]. 中国医师杂志,2020, 22(4):486-489.
[20] LI W T, TAN G H, ZHANG H Y, et al. Folate chitosan conjugated doxorubicin and pyropheophorbide acid nanoparticles (FCDP-NPs) for enhance photodynamic therapy[J]. RSC Advance 2017, 70 (7):44426-44437.
[21] PATTERSON M S, WILSONB C. Photodynamic therapy. In: Dyh JV, editor. The modem technology of radiation oncology[J]. Madison: Medical Physics Publishing, 1999, 9(3):71-80.
[22] PANDEY S K, ZHENG X, MORGAN J, et al. Purpurinimide carbohydrate conjugates: effect of the position of the carbohydrate moiety in photosensiti-zing efficacy [J]. Molecular Pharmaceutics, 2007, 4(3):448-464.
[23] HARRIS F, PIERPOINT L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent[J]. Medicinal Research Reviews, 2012, 32(6): 1292-1327.
[24] PANDEY R K, SUMLIN A B, CONSTANTINE S, et al. Alkyl ether analogs of chlorophylla derivatives: part1.synthesis, photophysical properties and photodynamic efficacy[J]. Photochem Photobiol, 1996,64(1): 194-204.
[25] CHEN L, ZHANG X, CAO Q Q, et al. Development and application of a physiologically based pharmacokinetic model for HPPH in rats and extrapolate to humans[J]. European Journal of Pharmaceutical Sciences, 2019, 129:68-78.
[26] GURINOVICH G P, ZORINA T E, MELNOV S B, et al. Photodynamic activity of chlorin e6 and chlorin e6 ethylenediamide in vitro and in vivo[J]. Journal of Photochemistry and Photobiology B: Biology, 1992, 13(1): 51-57.
[27] RYU J H, JEONG Y I, KIM H Y, et al. Enhanced photosensing and photodynamic treatment of colon cancer cells using methoxy poly(ethylene glycol)-conjugated chlorin e6[J]. Journal of Nanoscience & Nanotechnology, 2018, 18(2):1131-1136.
[28] JONAS J, DAGE S. The aromatic pathways of porphins, chlorins and bacteriochlorins[J]. Physical Chemistry Chemical Physics, 2000, 2: 2145-2151. [29] MILLER G G, BROWN K, BALLANGRUD A M, et al. Preclinical assessment of hypocrellin B and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: progress update[J]. Photochemistry and Photobiology, 1997, 65(4):714-722.
[30] PARK J, ENGLISH D S, WANNEMUEHLER Y, et al. The role of oxygen in the antiviral activity of hypericin and hypocrellin [J]. Photochemistry and Photobiology, 1998, 68(4): 593-597.
[31] MIROSSAY L, MIROSSAY A, KOCISOVA E, et al. Hypericin-induced phototoxicity of human leukemic cell line HL-60 is potentiated by omeprazole, an inhibitor of H+ K+-ATPase and5’-(N, N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger [J]. Physiological Research, 1998, 48(2): 135-141.
[32] 朱文婷,许桐瑛,谢蕊,等. 姜黄素在光动力与声动力治疗恶性肿瘤中的研究进展[J]. 现代肿瘤医学,2015(22):165-168.
[33] 许川山. 中药姜黄素的光谱学特性研究[J]. 激光杂志,2005(4):86-88.
[34] SCHRAUFSTTTTER E, BERNT H. Antibacterial action of curcumin and related compounds[J]. Nature, 1949, 164(4167):456-457.
[35] YADAV R, JEE B, AWASTHI S K. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells[J]. Indian Journal of Clinical Biochemistry, 2015, 30(1):109-112.
[36] MOTAGHINEJAD M, KARIMIAN M,MOTAGHI-NEJAD O, et al. Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus[J]. Pharmacological Reports, 2015, 67(2):230-235.
[37] WAGHELA B N, SHARMA A,DHUMALE S, et al. Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells[J]. Plos One, 2015, 10(2): e0117526.
[38] 陈瑞川,马胜平,苏金华,等. 姜黄素诱导人胃腺癌MGC80-3细胞凋亡研究[J]. 厦门大学学报(自然科学版),2000,39(3):124-128.
[39] CHENG A L, HSU C H, LIN J K, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions[J]. Anticancer Research, 2000, 21(4B):2895-2900.
[40] GARAI A, PANT I, BANERJEE S, et al. Photorelease and cellular delivery of mitocurcumin from its cytotoxic cobalt(III) complex in visible light[J]. Inorganic Chemistry, 2016,55(12): 6027-6035
[41] BANERJEE S, PRASAD P, KHAN I, et al. Mitochondria targeting photocytotoxic oxidovanadium(IV) complexes of curcumin and (acridinyl)dipyridophenazine in visible light[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2014, 640(6):1195-1204.
[42] 丁兰兰,栾立强,施佳伟,等. 酞菁在光动力治疗中的应用[J]. 无机化学学报,2013,29(8):1591-1598.
[43] ROSENTHAL I. Phthalocyanines as photodynamic sensitizers [J]. Photochemistry and Photobiology, 1991, 53(6): 859-870.
[44] 黄金陵,黄剑东,刘尔生,等. 酞菁配合物的结构与其光动力抗癌活性[J]. 物理化学学报,2001,17(7):662-671.
[45] 谢宝刚. 酞菁—蛋白质复合物及其作为抗癌光敏剂的研究[D]. 福州:福州大学, 2003.
[46] 陈耐生,薛金萍,黄金陵. 用于光动力治疗抗癌新药“福大赛因”的药学与I期临床研究[C]// 2010年中国药学大会暨第十届中国药师周论文集. 2010.
[47] 郑薇,陈勇军,李颖倩,等. 亚甲基蓝联合光动力疗法治疗黑色素瘤的机理研究[J]. 中国药理通讯,2010,27(4): 33-34.
[48] MA X, QU Q Y, ZHAO Y L. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy[J]. ACS Applied Materials & Interfaces, 2015, 7(20):10671-10676.
[49] CHEN X, DRAIN C M. Photodynamic therapy using carbohydrate conjugated porphyrins[J]. Drug Design Reviews Online, 2004, 1(3):215-234.
[50] VEDACHALAM S, CHOI B H, PASUNOOTI K K, et al. Glycosylated porphyrin derivatives and their photodynamic activity in cancer cells[J]. Medchemcomm, 2011, 2(5):371.
[51] ZHU X C, LU W T, ZHANG Y Z, et al. Imidazole-modified porphyrin as a pH-responsive sensitizer for cancer photodynamic therapy[J]. Chemical Communications, 2011, 47(37):10311-10313.
[52] CHOI Y. Selective antitumor effect of novel protease-mediated photodynamic agent[J]. Cancer Research, 2006, 66(14):7225-7229.
[53] CHAN J M, VALENCIA P M, ZHANG L, et al. Polymeric nanoparticles for drug delivery[J]. Methods in molecular biology (Clifton, N.J.), 2010, 624:163-175.
[54] KUMARI A, YADAV S K, YADAV S C. Biodegradable polymeric nanoparticles based drug delivery systems[J]. Colloids and Surfaces B: Biointerfaces, 2010, 75(1):1-18.
[55] AVCI P, ERDEM S S, HAMBLIN M R. Photodynamic therapy: one step ahead with self-assembled nanoparticles[J]. Journal of Biomedical Nanotechnology, 2014, 10(9):1937-1952.
[56] KHDAIR A, GERARD B, HANDA H, et al. Surfactant polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy[J]. Molecular Pharmaceutics, 2008, 5(5):795-807.
[57] CHOI K H, NAM K, CHO G, et al. Enhanced photodynamic anticancer activities of multifunctional magnetic nanoparticles (Fe3O4) conjugated with chlorin e6 and folic acid in prostate and breast cancer cells [J]. Nanomaterials, 2018, 8(9):722.
[58] YAMAKOSHI Y, UMEZAWA N, RYU A, et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2- versus 1O2[J]. Journal of the American Chemical Society, 2003, 125(42):12803-12809.
[59] MA H L, JIANG X L. Fullerenes as unique nanopharmaceuticals for disease treatment[J]. Science China Chemistry, 2010, 53(11): 2233-2240.[60] HOU L, YUAN Y J, REN J X, et al. In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene[J]. Journal of Nanoparticle Research, 2017, 19(8):286.
[61] LI Q, HONG L, LI H G, et al. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light[J]. Biosensors and Bioelectronics, 2017, 89: 477-482.