|本期目录/Table of Contents|

[1]陶先露,杨玉明,黎 明,等.仿纳米布沙漠甲壳虫的绿色环保型水收集材料[J].武汉工程大学学报,2021,43(02):174-179.[doi:10.19843/j.cnki.CN42-1779/TQ.202112003]
 TAO Xianlu,YANG Yuming,LI Ming,et al.Eco-Friendly Water-Collecting Materials Inspired by Namib Desert Beetles[J].Journal of Wuhan Institute of Technology,2021,43(02):174-179.[doi:10.19843/j.cnki.CN42-1779/TQ.202112003]
点击复制

仿纳米布沙漠甲壳虫的绿色环保型水收集材料(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
174-179
栏目:
生物与环境工程
出版日期:
2021-04-30

文章信息/Info

Title:
Eco-Friendly Water-Collecting Materials Inspired by Namib Desert Beetles
文章编号:
1674 - 2869(2022)02 - 0174 - 06
作者:
陶先露1杨玉明2黎 明1彭 姣1金士威*1
1. 中南民族大学化学与材料科学学院,催化转化与能源材料化学教育部重点实验室,催化材料科学湖北省重点实验室,湖北 武汉 430074; 2. 国投新疆罗布泊钾盐有限责任公司,新疆 哈密 839000
Author(s):
TAO Xianlu1 YANG Yuming2 LI Ming1 PENG Jiao1 JIN Shiwei*1
1. Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry & Materials Science, South-Central Minzu University, Wuhan 430074, China;2. State Development Investment Xinjiang Lop Nur Potash Corporation, Hami 839000, China
关键词:
纳米布沙漠甲壳虫预润湿环保荷叶水收集材料
Keywords:
Namib Desert Beetle prewetting environment-friendly lotus leaf water collection material
分类号:
O647.5
DOI:
10.19843/j.cnki.CN42-1779/TQ.202112003
文献标志码:
A
摘要:
受纳米布沙漠甲壳虫水收集机制的启发,开发超亲水-超疏水相间的图案化绿色环保型仿生水收集材料。以大自然中的荷叶为Cassie超疏水基底,利用有机溶剂环己烷溶液预润湿超疏水荷叶的方法,将二氧化钛纳米颗粒和良性胶的混合物黏附在其表面上构建超亲水位点。研究了超亲水位点的数量对水收集效率的影响及最佳水收集效率,并具体分析了水雾收集过程。结果表明:当样品的超亲水面积占比为4.2%(9个超亲水位点),此仿生水收集材料具有最佳的水收集效率为(28.02 ± 0.1) mg·min-1·cm-2。该方法成功制备绿色环保型仿生水收集材料,为解决全球水资源短缺问题提供了新的思路,有望大范围应用于现实生产中。
Abstract:
Inspired by the fog harvesting mechanism of the Namib Desert Beetle, environment-friendly bioinspired water-collecting material with superhydrophilic-superhydrophobic patterned was developed. The lotus leaf as the Cassie superhydrophobic substrate was prewetted with the organic solvent cyclohexane, and the mixtures of titanium dioxide nanoparticles with benign glue were adhered to its surface to construct superhydrophilic sites. The effects of superhydrophilic sites numbers on the water collection rate and the maximum were investigated, and the water collection process was analyzed in detail. The results show that the bioinspired fog harvesting material has the best water collection rate of (28.02 ± 0.1) mg·min-1·cm-2 when the percentage of superhydrophilic area of the sample is 4.2% (9 superhydrophilic sites). By this method, environment-friendly bioinspired water collection materials have been successfully prepared which provides a new idea for solving the global water shortage problem.

参考文献/References:

[1] 金银雪.全球变暖下的水资源危机[J]. 生态经济,2020, 36(6):5-8.[2] HYBEL A M, GODSKESEN B, RYGAARD M. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources [J]. Journal of Environmental Manage-ment, 2015, 160: 90-97.[3] ZHU R F, LIU M M, HOU Y Y, et al. Mussel-inspired photothermal synergetic system for clean water production using full-spectrum solar energy [J].Chemical Engineering Journal, 2021, 423: 129099.[4] CHEN H W,ZHANG P F,ZHANG L W,et al. Continuous directional water transport on the peristome surface of Nepenthes alata [J]. Nature, 2016, 532: 85-89.[5] TIAN Y, ZHU P G, TANG X, et al. Large-scale water collection of bioinspired cavity-microfibers [J]. Nature Communications, 2017, 8: 1080. [6] HAN C, GENG J J, XIE X C, et al. Determination of phosphite in a eutrophic freshwater lake by suppressed conductivity ion chromatography [J].Environmental Science & Technology, 2012, 46(19): 10667-10674.[7] PARKER A R, LAWRENCE C R. Water capture by a desert beetle [J]. Nature, 2001, 414: 33-34.[8] XU C, FENG R, SONG F, et al. A Desert Beetle-inspired superhydrophilic/superhydrophobic patterned cellulose film with efficient water collection and antibacterial performance[J]. ACS Sustainable Chemistry & Engineering, 2018,6(11):14679-14684.[9] ZHANG M, ZHENG Z Y, ZHU Y Q, et al. Combinational biomimetic microfibers for high-efficiency water collection[J]. Chemical Engineering Journal, 2022, 433: 134495.[10] ZHANG L B, WU J B, HEDHILI M N, et al. Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces [J]. Journal of Materials Chemistry A, 2015, 3(6): 2844-2852.[11] KOSTAL E, STROJ S, KASEMANN S, et al. Fabrication of biomimetic fog-collecting superhy-drophilic-superhydrophobic surface micropat-terns using femtosecond lasers[J]. Langmuir,2018,34(9): 2933-2941.[12] WANG Y C, ZHANG L B, WU J B, et al. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting [J]. Journal of Materials Chemistry A, 2015, 3(37): 18963-18969.[13] 郑建勇,冯杰,钟明强. CaCO3颗粒模板法制备聚合物超亲水/超疏水表面[J]. 高分子学报,2010(10):1186-1192.[14] AN Q, WANG J S, ZHAO F, et al. Fog collection on a superhydrophobic/hydrophilic composite spine surface [J]. RSC Advances,2020,10 (16):9318-9323.[15] DIBY N D,WANG J,DUAN Y Q. Motion behaviourof water-droplet on alternate superhydrophobic-hydrophilic ZnO wetting-patterned surface[J]. Surface Engineering, 2019, 36 (6): 636-642.[16] LI H W, YIN D D, LU G L, et al. Effects of inclination angle and heat power on heat transfer behavior of flat heat pipe with bionic grading microchannels[J]. Applied Thermal Engineering, 2022, 206: 118079.[17] ANTONINI C, CARMONA F J, PIERCE E, et al. General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces [J]. Langmuir, 2009, 25(11): 6143-6154.[18] ZHU H, DUAN R L, WANG X D, et al. Prewetting dichlormethane induced aqueous solution adhered on Cassie superhydrophobic substrates to fabricate efficient fog-harvesting materials inspired by Namib desert beetles and mussels[J]. Nanoscale, 2018, 10 (27):13045-13054.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-12-06基金项目:中央高校基本科研业务费专项资金(CZY19005)作者简介:陶先露,硕士研究生。E-mail:[email protected]*通讯作者:金士威,博士,教授。E-mail: [email protected]引文格式:陶先露,杨玉明,黎明,等. 仿纳米布沙漠甲壳虫的绿色环保型水收集材料[J]. 武汉工程大学学报,2022,44(2):174-179.
更新日期/Last Update: 2022-04-28