[1] 肖妍. 水下弹性结构噪声源识别方法研究[D]. 哈尔滨:哈尔滨工程大学,2015.[2] 从继成,曾步衢. 基于TV-泊松奇异积分联合先验模型的图像重构[J]. 包装工程,2015,36(7):116-122.
[3] 谢贵重. 边界积分方程的奇异性处理及其在断裂力学方面的应用[D]. 长沙:湖南大学,2014.
[4] 胡婷婷,刘姣,金国祥. 基于三角方法的Cauchy主值积分数值计算[J]. 武汉工程大学学报,2015,37(6):63-66.
[5] 杜金元. Cauchy型积分的一种边值定理及其应用[J]. 数学杂志,1982(2): 115-126.
[6] DU J Y,LU K J. On?a?class?of?singular?integral equations with translations[J]. Chinese Annals of Mathematics, 1990(1):105-117.
[7] ALAHMADI J, ALQAHTANI H, PRANIC M S. Gauss-Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix[J]. Numerical Algorithms, 2021,88:1937-1964.
[8] DIAZ?A P, RODRIGUEZ G. Solution of second kind Fredholm integral equations by means of Gauss and anti-Gauss quadrature rules[J].?Numerische Mathematik, 2020,146:?699-728.
[9] 陈传希,金国祥. 计算Cauchy主值积分的高精度公式[J]. 高等学校计算数学学报,2019,41(3):224-233.
[10] KRONROD A S. Nodes and Weight for Quadrature Formulae[M].New York: Consultants Bureau, 1964.
[11] NOTARIS E. Gauss-Kronrod quadrature formuale-a survey of fifty years of research[J]. Electronic Transactions on Numerical Analysis,2016,45:371-404.
[12] SPALEVIC M M. A note on generalized averaged Gaussian formulas for a class of weight functions[J]. Numerical Algorithms, 2020, 85: 977-993.
[13] LAURIE D P. Anti-Gaussian quadrature formulas[J]. Mathematical and Computer Modelling of Dynamical Systems, 1996,65: 739-747.
[14] SZEGO G. Orthogonal Polynomials[M]. 4th ed. New York: America Mathematical Society, 1975.
[15] NOTARIS E. Anti-Gaussian quadrature formulae based on the zeros of Stieltjes polynomials[J]. Bit Numerical Mathematics, 2018, 58:179-198.