|本期目录/Table of Contents|

[1]李寒嫣,张彦铎*.Cauchy核奇异积分的反Gauss求积算法[J].武汉工程大学学报,2021,43(02):186-189.[doi:10.19843/j.cnki.CN42-1779/TQ.202112008]
 LI Hanyan,ZHANG Yanduo*.Anti-Gaussian Quadrature Rules for Singular Integrals with Cauchy Kernel[J].Journal of Wuhan Institute of Technology,2021,43(02):186-189.[doi:10.19843/j.cnki.CN42-1779/TQ.202112008]
点击复制

Cauchy核奇异积分的反Gauss求积算法(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
186-189
栏目:
机电与信息工程
出版日期:
2021-04-30

文章信息/Info

Title:
Anti-Gaussian Quadrature Rules for Singular Integrals with Cauchy Kernel
文章编号:
1674 - 2869(2022)02 - 0186 - 04
作者:
李寒嫣张彦铎*
武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
LI Hanyan ZHANG Yanduo*
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
奇异积分反Gauss求积求积系数代数精度
Keywords:
singular integral anti-Gaussian quadrature formulae quadrature coefficients algebraic precision
分类号:
O241.4
DOI:
10.19843/j.cnki.CN42-1779/TQ.202112008
文献标志码:
A
摘要:
利用正交多项式的三项循环关系,定义了一新的正交多项式,建立了奇异积分的插值型反Gauss求积公式。用极限方法构造出求积系数和余项积分显式表达式,余项积分表达式表明奇异积分的反Gauss求积算法是收敛的,对奇异积分求积算法进行了模拟与仿真, 结果表明,随着求积结点数的增多,通过反Gauss求积公式计算的积分值与积分精确值的误差在缩小,误差曲线也较为平滑,所得积分近似值逐渐逼近积分的精确值。该求积算法可应用到工程技术数值计算中, 为应用软件的开发提供了理论依据。
Abstract:
A new orthogonal polynomial was defined by using the three-term recurrence relation for orthogonal polynomials, and the interpolation anti-Gaussian quadrature formulae for singular integrals were established. The explicit expressions of quadrature coefficient and remainder were constructed by the limit method. The expression of remainder shows that the anti-Gaussian quadrature formulae of singular integral are convergent. Finally, the proposed quadrature rules for singular integrals were simulated. The result shows that the error decreases with the number of quadrature nodes increasing, the error curve is relatively smooth, and the approximate value of the integral gradually approaches the exact value of the integral. This quadrature rules can be applied to the numerical calculation of engineering technology, which provides a theoretical basis for the development of some computer application software.

参考文献/References:

[1] 肖妍. 水下弹性结构噪声源识别方法研究[D]. 哈尔滨:哈尔滨工程大学,2015.

[2] 从继成,曾步衢. 基于TV-泊松奇异积分联合先验模型的图像重构[J]. 包装工程,2015,36(7):116-122.
[3] 谢贵重. 边界积分方程的奇异性处理及其在断裂力学方面的应用[D]. 长沙:湖南大学,2014.
[4] 胡婷婷,刘姣,金国祥. 基于三角方法的Cauchy主值积分数值计算[J]. 武汉工程大学学报,2015,37(6):63-66.
[5] 杜金元. Cauchy型积分的一种边值定理及其应用[J]. 数学杂志,1982(2): 115-126.
[6] DU J Y,LU K J. On?a?class?of?singular?integral equations with translations[J]. Chinese Annals of Mathematics, 1990(1):105-117.
[7] ALAHMADI J, ALQAHTANI H, PRANIC M S. Gauss-Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix[J]. Numerical Algorithms, 2021,88:1937-1964.
[8] DIAZ?A P, RODRIGUEZ G. Solution of second kind Fredholm integral equations by means of Gauss and anti-Gauss quadrature rules[J].?Numerische Mathematik, 2020,146:?699-728.
[9] 陈传希,金国祥. 计算Cauchy主值积分的高精度公式[J]. 高等学校计算数学学报,2019,41(3):224-233.
[10] KRONROD A S. Nodes and Weight for Quadrature Formulae[M].New York: Consultants Bureau, 1964.
[11] NOTARIS E. Gauss-Kronrod quadrature formuale-a survey of fifty years of research[J]. Electronic Transactions on Numerical Analysis,2016,45:371-404.
[12] SPALEVIC M M. A note on generalized averaged Gaussian formulas for a class of weight functions[J]. Numerical Algorithms, 2020, 85: 977-993.
[13] LAURIE D P. Anti-Gaussian quadrature formulas[J]. Mathematical and Computer Modelling of Dynamical Systems, 1996,65: 739-747.
[14] SZEGO G. Orthogonal Polynomials[M]. 4th ed. New York: America Mathematical Society, 1975.
[15] NOTARIS E. Anti-Gaussian quadrature formulae based on the zeros of Stieltjes polynomials[J]. Bit Numerical Mathematics, 2018, 58:179-198.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-12-08
作者简介:李寒嫣,硕士研究生。E-mail: [email protected]
*通讯作者:张彦铎,博士,教授。E-mail: [email protected]
引文格式:李寒嫣,张彦铎. Cauchy核奇异积分的反Gauss求积算法[J]. 武汉工程大学学报,2022,44(2):186-189.
更新日期/Last Update: 2022-04-28