[2] THOMPSON R C, SWAN S H, MOORE C J, et al. Our plastic age[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009,364(1526): 1973-1976.
[3] THOMPSON R C. Lost at sea: where is all the plastic?[J]. Science, 2004,304(5672): 838.
[4] 周倩, 章海波, 周阳, 等. 滨海河口潮滩中微塑料的表面风化和成分变化[J]. 科学通报, 2018,63(2): 214-224.
[5] ALIMI O S, BUDARZ J F,HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018,52(4): 1704-1724.
[6] KLINGELHFER D,BRAUN M,QUARCOO D, et al. Research landscape of a global environmental challenge: microplastics[J]. Water Research, 2019,170: 115358: 1-43.
[7] VAN SEBILLE E, WILCOX C, LEBRETON L, et al. A global inventory of small floating plastic debris[J]. Environmental Research Letters,2015,10(12): 124006: 1-12.
[8] SHAHUL HAMID F,BHATTI M S,ANUAR N, et al. Worldwide distribution and abundance of microplastic: how dire is the situation?[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2018,36(10): 873-897.
[9] LIU F F, WANG S C, ZHU Z L, et al. Current progress on marine microplastics pollution research: a review on pollution occurrence, detection, and environmental effects[J]. Water, 2021,13(12):1713-1739.
[10] PIVOKONSKY M, CERMAKOVA L, NOVOTNA K, et al. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 2018,643(12): 1644-1651.
[11] SU Y L, ZHANG Z J, WU D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019,164(1): 114961-114968.
[12] ZHAO J M, RAN W, TENG J, et al. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China[J]. Science of The Total Environment, 2018,640/641: 637-645.
[13] 李富云, 贾芳丽, 涂海峰, 等. 海洋中微塑料的环境行为和生态影响[J]. 生态毒理学报,2017,12(6): 11-18.
[14] 刘强,徐旭丹,黄伟,等. 海洋微塑料污染的生态效应研究进展[J]. 生态学报,2017,37(22):7397-7409.
[15] PETERS C A, THOMAS P A, RIEPER K B, et al. Foraging preferences influence microplastic ingestion by six marine fish species from the Texas Gulf Coast[J]. Marine Pollution Bulletin, 2017,124(1): 82-88.
[16] NADAL M A, ALOMAR C, DEUDERO S. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L.) around the Balearic Islands[J]. Environmental Pollution, 2016,214(7): 517-523.
[17] PETERS C A, BRATTON S P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA[J]. Environmental Pollution, 2016,210(5): 380-387.
[18] VENDEL A L, BESSA F, ALVES V E N, et al. Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures[J]. Marine Pollution Bulletin, 2017,117(1/2): 448-455.
[19] ALIMBA C G, FAGGIO C. Microplas-tics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile[J]. Environmental Toxicology and Pharmacology, 2019,68: 61-74.
[20] KHALID N, AQEEL M, NOMAN A, et al. Linking effects of microplastics to ecological impacts in marine environments[J]. Chemosphere, 2021,264(2): 128541: 1-55.
[21] SONG J H, CUI S, LI P, et al. Research progress on ecotoxicological effects of micro-plastics loaded pollutants[J]. IOP Conference Series: Earth and Environmental Science, 2018,186(3): 12027: 1-7.
[22] WANG W F, WANG J. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics[J]. Chemosphere, 2018,193: 567-573.
[23] WRIGHT S L, THOMPSON R C,GALLOWAY T S. The physical impacts of microplastics on marine organisms: a review[J]. Environmental Pollution, 2013,178: 483-492.
[24] DESFORGES J W, GALBRAITH M, ROSS P S. Ingestion of microplastics by Zooplankton in the northeast pacific ocean[J]. Archives of Environmental Contamination and Toxicology, 2015,69(3): 320-330.
[25] COLLARD F, GILBERT B, EPPE G, et al. Detection of anthropogenic particles in fish Stomachs: an isolation method adapted to identification by Raman spectroscopy[J]. Archives of Environmental Contamination & Toxicology, 2015,69(3): 331-339.
[26] HUANG W, WANG X H, CHEN D Y, et al. Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry[J]. Journal of Hazardous Materials, 2021,417: 126003: 1-10.
[27] GU H X, WANG S X, WANG X H, et al. Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea[J]. Journal of Hazardous Materials, 2020,397: 122773: 1-8.
[28] MASON S A, WELCH V G, JOSEPH N. Synthetic polymer contamination in bottled water[J]. Frontiers in Chemistry, 2018,6: 407-417.
[29] SCHIRINZI G F, PEREZ-POMEDA I, SANCHIS J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J]. Environmental Research, 2017,159(11): 579-587.
[30] WRIGHT S L, KELLY F J. Plastic and human health: a micro issue?[J]. Environmental Science & Technology, 2017,51(12): 6634-6647.
[31] BOUWMEESTER H, HOLLMAN P, PETERS R. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology[J]. Environmental Science & Technology, 2015,49(15): 8932-8947.
[32] ASAMOAH B O, KANYATHARE B, ROUSSEY M, et al. A prototype of a portable optical sensor for the detection of transparent and translucent microplastics in freshwater[J]. Chemosphere, 2019,231(9): 161-167.
[33] SONG Y K, HONG S H, JANG M, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples[J]. Marine Pollution Bulletin, 2015,93(1/2): 202-209.
[34] ZHU X, NGUYEN B, YOU J B, et al. Identification of microfibers in the environment using multiple lines of evidence[J]. Environmental Science & Technology, 2019,53(20): 11877-11887.
[35] MUCCIO Z, JACKSON G P. Isotope ratio mass spectrometry[J]. Analyst, 2009,134(2): 213-222.
[36] DUARTE C M, DELGADO-HUERTAS A, ANTON A, et al. Stable isotope (δ13C, δ15N, δ18O, δD) composition and nutrient concentration of red sea primary producers[J]. Frontiers in Marine Science, 2018,5: 298: 1-12.
[37] TURNER A, HOLMES L. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean)[J]. Marine Pollution Bulletin, 2011,62(2): 377-381.
[38] WANG Z M, WAGNER J, GHOSAL S, et al. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts[J]. Science of the Total Environment, 2017,603/604: 616-626.
[39] FUNCK M, YILDIRIM A, NICKEL C, et al. Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC-MS[J]. MethodsX, 2019,7: 100778: 1-8.
[40] HENGSTMANN E, FISCHER E K. Nile red staining in microplastic analysis—proposal for a reliable and fast identification approach for large microplastics[J]. Environmental Monitoring and Assessment, 2019,191(10):612-620.
[41] WANG J B, LIU C, YANG S, et al. Fabrication of a ternary heterostructure BiVO4 quantum dots/C60/g-C3N4 photocatalyst with enhanced photocatalytic activity[J]. Journal of Physics and Chemistry of Solids, 2019,136: 109164: 1-7.
[42] SHI W L, LIU C, LI M Y, et al. Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following type II and Z-scheme dual pathways for enhanced visible-light photocatalytic activity[J]. Journal of Hazardous Materials, 2019,389: 121907: 1-23.
[43] LONG Z Q, LI Q G, WEI T, et al. Historical development and prospects of photocatalysts for pollutant removal in water[J]. Journal of Hazardous Materials, 2020,395: 122599: 1-19.
[44] YANG S, LIU C, WANG J B, et al. Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites[J]. Journal of Solid State Chemistry, 2020,287: 121347: 1-8.
[45] TANG M L, AO Y H, WANG C, et al. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation[J]. Applied Catalysis B: Environmental, 2020,270: 118918: 1-11.
[46] JIANG R R, LU G H, YAN Z H, et al. Microplastic degradation by hydroxy-rich bismuth oxychloride[J]. Journal of Hazardous Materials, 2020,415:124247: 1-41.
[47] NABI I, BACHA A, LI K, et al. Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film[J]. iScience,2020,23(7): 101326: 1-28.
[48] TOFA T S, KUNJALI K L, PAUL S, et al. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods[J]. Environmental Chemistry Letters, 2019,17(3): 1341-1346.
[49] TOFA T S, YE F, KUNJALI K L, et al. Enhanced visible light photodegradation of microplastic fragments with plasmonic platinum/zinc oxide nanorod photocatalysts[J]. Catalysts, 2019,9(10): 819-831.
[50] OBERBECKMANN S, LABRENZ M. Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation[J]. Annual Review of Marine Science, 2019,12(1): 209-232.
[51] YANG Y Y, LIU W Z, ZHANG Z L, et al. Microplastics provide new microbial niches in aquatic environments[J]. Applied Microbiology and Biotechnology, 2020,104(15): 6501-6511.
[52] GUAN N Z, LI J H, SHIN H, et al. Microbial response to environmental stresses: from fundamental mechanisms to practical applications[J]. Applied Microbiology and Biotechnology, 2017,101(10): 3991-4008.
[53] NICAOGáIN K, O BYRNE C P. The role of stress and stress adaptations in determining the fate of the bacterial pathogen listeria monocytogenes in the food chain[J]. Frontiers in Microbiology, 2016,7:1865-1880.
[54] KAWAI F,KAWABATA T,ODA M. Current know-ledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Applied Microbiology and Biotechnology, 2019,103(11): 4253-4268.
[55] áLVAREZ-BARRAGáN J, DOMíNGUEZ-MALFAVóN L, VARGAS-SUáREZ M, et al. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams[J]. Applied and Environmental Microbiology, 2016,82(17): 5225-5235.
[56] GóMEZ-MéNDEZ L D, MORENO-BAYONA D A, POUTOU-PI?ALES R A, et al. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus[J]. PLOS ONE, 2018,13(9): e203786: 1-28.
[57] SCHWAMINGER S P, FEHN S, STEEGMüLLER T, et al. Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET[J]. Nanoscale Advances, 2021,3(15): 4395-4399.
[58] GHATGE S, YANG Y, AHN J H, et al. Biodegrada-tion of polyethylene: a brief review[J]. Applied Biological Chemistry, 2020,63(1): 1-14.
[59] CHATTERJEE S, ROY B, ROY D, et al. Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species[J]. Polymer Degradation & Stability, 2010,95(2): 195-200.
[60] SEN S K, RAUT S. Microbial degradation of low density polyethylene (LDPE): a review[J]. Journal of Environmental Chemical Engineering, 2015,3(1): 462-473.
[61] MONTAZER Z, NAJAFI M B H, LEVIN D B. Challenges with verifying microbial degradation of polyethylene[J]. Polymers, 2020,12(1): 123-146.
[62] YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016,351(6278): 1196-1199.
[63] KNOTT B C, ERICKSON E, ALLEN M D, et al. Characterization and engineering of a two-enzyme system for plastics depolymerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(41): 25476-25485.
[64] NAKAMIYA K, SAKASITA G, OOI T, et al. Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121[J]. Journal of Fermentation & Bioengineering, 1997,84(5): 480-482.
[65] CHANDRA P, ENESPA, SINGH D P. Micrrorganisms for sustainable envirmments and health[M]. Amsterdam:Elsevier, 2020: 431-467.
[66] SHIMAO M, TAMOGAMI T, KISHIDA S, et al. The gene pvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene pvaA[J]. Microbiology (Society for General Microbiology), 2000,146(3): 649-657.
[67] WANG P C, HUANG Z X, CHEN S, et al. Sustainable removal of nano/microplastics in water by solar energy[J]. Chemical Engineering Journal, 2022,428: 131196: 1-7.