|本期目录/Table of Contents|

[1]梁 田,龙 晓,宋 浩,等.无机路易斯酸脱除模拟焦化粗苯中噻吩的研究[J].武汉工程大学学报,2022,44(04):377-383.[doi:10.19843/j.cnki.CN42-1779/TQ.202110021]
 LIANG Tian,LONG Xiao,SONG Hao,et al.Removal of Thiophene from Simulated Coking Crude Benzene Using Inorganic Lewis Acids[J].Journal of Wuhan Institute of Technology,2022,44(04):377-383.[doi:10.19843/j.cnki.CN42-1779/TQ.202110021]
点击复制

无机路易斯酸脱除模拟焦化粗苯中噻吩的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年04期
页码:
377-383
栏目:
化学与化学工程
出版日期:
2022-08-31

文章信息/Info

Title:
Removal of Thiophene from Simulated Coking Crude Benzene Using Inorganic Lewis Acids
文章编号:
1674 - 2869(2022)04 - 0377 - 07
作者:
梁 田1龙 晓1宋 浩2沈喜洲*1
1. 武汉工程大学化工与制药学院,湖北 武汉 430205;
2. 中国石化石油化工科学研究院,北京 100083
Author(s):
LIANG Tian1LONG Xiao1SONG Hao2SHEN Xizhou*1
1. School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205, China;
2. SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China

关键词:
三氯化铁噻吩焦化粗苯
Keywords:
anhydrous ferric chloride thiophene coking crude benzene
分类号:
TQ524
DOI:
10.19843/j.cnki.CN42-1779/TQ.202110021
文献标志码:
A
摘要:
为消除焦化粗苯中噻吩类硫化物对生产纯苯质量所带来的影响,研究开发了脱除苯中噻吩的非加氢技术,考察了无机路易斯酸种类、模拟原料组成、反应时间、摩尔比以及反应温度对噻吩脱除率的影响,并对其表观反应动力学进行研究。结果表明,在六种无机路易斯酸FeCl3、CoCl2、ZnCl2、NiCl2、CuCl2、CuCl中,FeCl3对模拟焦化粗苯中噻吩有较好的脱除效果,且在其它实验条件相同时,FeCl3对不同组成模拟焦化粗苯中噻吩的脱除率由低到高顺序依次为噻吩/苯,噻吩/甲苯,噻吩/苯-甲苯-二甲苯。噻吩脱除率随反应时间(0~70 min)、氯化铁与噻吩摩尔比[(1∶1)~(8∶1)]和反应温度(10~70 ℃)的增加而增加,反应时间为20 min、FeCl3与噻吩摩尔比5∶1、温度70 ℃为最佳反应条件,其噻吩脱除率为94.69%。在328.15~348.15 K温度范围内,符合一级表观反应动力学,其表观反应指前因子和表观反应活化能为19.214 h-1和10.230 kJ·mol-1
Abstract:
To eliminate the adverse effect of thiophenic compounds on the quality of pure benzene produced by coking crude benzene, a non-hydrogenation technology for removing thiophene from coking crude benzene was developed. The effects of type of inorganic lewis acids, composition of simulated coking crude benzene, reaction time, molar ratio and temperature on thiophene removal rate were investigated, and the apparent reaction kinetic of sulfide removal process was studied accordingly. The results showed that among six inorganic lewis acids (including FeCl3, CoCl2, ZnCl2, NiCl2, CuCl2, CuCl), FeCl3 has a better efficiency on the removal of thiophene from simulated coking crude benzene. Utilizing FeCl3 to remove thiophene from simulated coking crude benzene with different composition (under the same experimental condition), the order of thiophene removal rate is thiophene/benzene-toluene-xylene> thiophene/toluene> thiophene/benzene. Moreover, the thiophene removal rate increases with the increase of reaction time (0-70 min), molar ratios [(1∶1)-(8∶1)] and temperatures (10-70 ℃). The removal rate is 94.69% under the optimal conditions with reaction time of 20 min, molar ratio of 5∶1 and temperatures of 70 ℃. Furthermore, the reaction between thiophene and FeCl3 is in accordance with the first-order apparent kinetic equation within 328.15-348.15 K, and the apparent pre-exponential factor and the apparent activation energy are 19.214 h-1 and 10.230 kJ·mol-1, respectively.

参考文献/References:

[1] 赵国强, 陈晓华,王莉, 等. 加氢脱硫催化剂的研究进展[J]. 乙醛醋酸化工, 2020(1): 4-7.

[2] 牛乐朋, 王志展. 焦化苯中噻吩类硫化物脱除技术研究进展[J]. 合成纤维工业, 2019, 42(5): 64-69.
[3] 董一春. 萃取精馏分离苯和噻吩过程强化的研究[D]. 北京: 北京化工大学, 2015.
[4] LIAO J J, WANG Y S, CHANG L P, et al. A process for desulfurization of coking benzene by a two-step method with reuse of sorbent/thiophene and its key procedures [J]. Green Chemistry,2015,17(5):3164-3175.
[5] DYREBORG S, ARVIN E, BROHOLM K. Concomi-tant aerobic biodegradation of benzene and thiophene[J]. Environmental Toxicology & Chemistry, 1998, 17(5): 851-858.
[6] FANG L Y, SHEN Z, SHEN X Z, et al. A study on thiophene removals from model oils with different molecular compositions using an inexpensive N-methylpyrrolidone-FeCl3 ionic liquid[J]. Journal of Molecular Liquids 2021, 333:115913:1-9.
[7] FANG L Y, SHEN Z, SHEN X Z, et al. Effect of water on extractive desulfurization of simulated FCC gasoline using ionic liquid NMP-FeCl3-H2O[J]. China Petroleum Processing and Petrochemical Technology, 2021, 23(2): 121-131.
[8] SHEN X Z, LI Z Q, FANG L Y, et al. Extractive desulfurization from simulated sulfur-rich naphtha[J]. China Petroleum Processing and Petrochemical Technology, 2019, 21(3): 61-67.
[9] KOROBCHANSKII V I, GORBACH V M. Thiophene polymerization during the sulfuric-acid washing of benzene[J]. Coke Chem, 1977, 8: 30-32.
[10] ANOKHINA E A, TIMOSHENKO A V, AKISHIN A Y, et al. Benzene purification from thiophene using dimethylformamide as an entrainer in thermally coupled extractive distillation columns[J]. Chemical Engineering Research & Design,2019,146: 391-403.
[11] LIAO J, ZHANG Y, FAN L, et al. Insight into the acid sites over modified NaY zeolite and their adsorption mechanisms for thiophene and benzene[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4572-4580.
[12] YANG C, JI H W, CHEN C C, et al. Desulfurization of thiophenes in oils into H2SO4 using molecular oxygen[J]. Applied Catalysis B: Environmental Science & Pollution Research, 2018, 235: 207-213.
[13] LIAO J J, BAO L, WANG W B, et al. Preparation of AlCl3/silica gel catalyst for simultaneously removing thiophene and olefins from coking benzene by inclosed grafting method[J]. Fuel Processing Technology, 2014, 117: 38-43.
[14] PAN C G, MA H Z. Desulfurization of simulated coking benzene on modified activated clay[J]. Advanced Materials Research,2012,524/525/526/527:876-882.
[15] SHEN X Z, SONG H, FANG L Y, et al. Converting thiophene in simulated coking crude benzene to N, N-dimethyl-2-thiophenecarboxamide by dimethylcar-bamyl chloride under mild conditions[J]. Chemical Research in Chinese Universities,2019,35(4):? 674-679.
[16] GAO J J, CHEN X Y, REN N N, et al. Acylation desulfurization of oil via reactive adsorption[J]. AIChE Journal, 2013, 59(8):2966-2976.
[17] 冯心凭, 周贤均, 周林, 等. 一种使用三氯化铝脱除苯中的噻吩的工艺及其生产装置:200710026840 [P]. 2008-08-13.
[18] GAO J J, LI H Q, ZHANG H X, et al. Removal mechanism of thiophenic compounds in model oil by inorganic lewis acids[J]. Industrial & Engineering Chemistry Research, 2012, 51(12): 4682-4691.
[19] WAGNER S E. Small-scale technology for benzene synthesis from coke-oven gas[J]. Coke and Chemistry,2019,62(2):57-62.
[20] HOLMES H N, BEEMAN N. Removal of thiophene from benzene[J]. Industrial and Engineering Chemistry, 1934, 26(2): 172-174.
[21] SCHNEIDER A, HILLS O, JANOSKI E J, et al. Removal of thiophene from benzene: US3148226 [P]. 1964-08-09.
[22] 赵智, 姚海沛. 一起化学爆炸事故原因调查[J]. 消防科学与技术,2013,32(3): 344-346.
[23] HUSAIN A, AHMAD S, MOHAMMAD F. Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite[J]. Materials Chemistry and Physics, 2020, 239:122324:1-11.
[24] NOREEN H, IQBAL J, HASSAN W, et al. Synthesis of graphene nanoplatelets/polythiophene nanocomposites with enhanced photocatalytic degradation of bromophenol blue and antibacterial properties[J]. Materials Research Bulletin,2021, 142:111435:1-13.
[25] HAN P Y, LIAO J J, CHANG J Y, et al. Preparation and characterization of poly(3-methylthiophene)/CeY zeolite composites[J]. RSC Advances,2015(5): 49343-49349.
[26] LI Y W, MA H Z. Application of kaolin solid acid catalyst in the dethiophene from coking benzene[J]. Advanced Materials Research,2012,455/456:966-973.
[27] DANG S, ZHAO L, YANG Q, et al. Competitive adsorption mechanism of thiophene with benzene in FAU zeolite: the role of displacement[J]. Chemical Engineering Journal, 2017, 328:172-185.
[28] 王亚杉, 廖俊杰, 韩鹏月,等. 化学氧化法制备条件对聚噻吩导电性能的影响[J]. 太原理工大学学报, 2017, 48(4):563-569.
[29] SHIRBHATE P D, PAKADE S V, YAWALE S P. Preparation and characterization of polythiophene polymer composite[J]. Transactions of the Indian Institute of Metals, 2016, 69: 669-672.
[30] 任文建, 任懂, 任帅, 等. 一种氯化亚铁转化为氯化铁的方法: 201811088043.4 [P]. 2019-01-08.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-10-19
基金项目:沈喜洲焦氏粗苯脱吡啶中间放大试验(010338)
作者简介:梁 田,硕士研究生。E-mail:[email protected]
*通讯作者:沈喜洲,硕士,教授。E-mail:[email protected]
引文格式:梁田,龙晓,宋浩,等. 无机路易斯酸脱除模拟焦化粗苯中噻吩的研究[J]. 武汉工程大学学报,2022,44(4):377-383.

更新日期/Last Update: 2022-08-25