[2] 马璐璐, 吴杰, 吕中. 纳米氧化铜与庆大霉素协同抗MRSA作用的研究[J].武汉工程大学学报, 2016, 38 (3): 226-230.
[3] 孙宇君, 吕中. 季铵盐类聚合物增强纳米抗菌材料性能的研究进展[J].武汉工程大学学报,2021,43 (1): 12-20.
[4] TAUBES G. The bacteria fight back[J]. Science, 2008, 321 (5887): 356-361.
[5] LIANG M M, YAN X Y. Nanozymes: from new concepts, mechanisms, and standards to applications[J]. Accounts of Chemical Research, 2019, 52 (8): 2190-2200.
[6] LI D D, GUO Q Q, DING L M, et al. Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral pH for combating burn infections[J]. ChemBioChem, 2020, 21 (18): 2620-2627.
[7] CAO C Y, ZHANG T B, YANG N, et al. POD nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy[J]. Signal Transduction and Targeted Therapy, 2022, 7 (1): 86:1-9.
[8] WU R F, CHONG Y, FANG G,et al. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing[J]. Advanced Functional Materials, 2018, 28 (28): 1801484:1-11.
[9] WANG Y, CHEN C, ZHANG D, et al. Bifunc-tionalized novel Co-V MMO nanowires: intrinsic oxidase and peroxidase like catalytic activities for antibacterial application[J]. Applied Catalysis B: Environmental, 2020, 261: 118256:1-11.
[10] NAZ S, AKHTAR J, CHAUDHARY M F, et al. Low-temperature synthesis of hierarchical structures of copper oxide and their superior biological activity[J]. IET Nanobiotechnology,2018,12(7): 968-972.
[11] CHEN W, CHEN J, LIU A L, et al. Peroxidase-like activity of cupric oxide nanoparticle[J]. ChemCatChem, 2011, 3 (7): 1151-1154.
[12] LIU Y J, ZHU G X, BAO C L, et al. Intrinsic peroxidase-like activity of porous CuO micro-/nanostructures with clean surface[J]. Chinese Journal of Chemistry, 2014, 32 (2): 151-156.
[13] CHEN M M, DING Y N, GAO Y, et al. N,N′-di-caboxy methyl perylene diimide (PDI) functionalized CuO nanocomposites with enhanced peroxidase-like activity and their application in visual biosensing of H2O2 and glucose[J]. RSC Advances, 2017, 7 (41): 25220-25228.
[14] HU C Y, YANG D P, XU K, et al. Ag@BSA core/shell microspheres as an electrochemical interface for sensitive detection of urinary retinal-binding protein[J]. Analytical Chemistry, 2012, 84 (23): 10324-10331.
[15] SUN Z C, YAO J J, WANG J D, et al. Room-temperature harvesting oxidase-mimicking enzymes with exogenous ROS generation in one step[J]. Inorganic Chemistry, 2022, 61 (2): 1169-1177.
[16] LIU Y L, ZHAO X J, YANG X X, et al. A nanosized metal-organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose[J]. Analyst, 2013, 138 (16): 4526-4531.
[17] 张艳. 氧化钼纳米抑菌材料设计及应用研究[D]. 青岛:青岛大学, 2021.
[18] GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Natute Nanotechnology,2007,2(9):577-583.
[19] CAI Q, LU S K, LIAO F, et al. Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite[J]. Nanoscale, 2014,6 (14): 8117-8123.
[20] LI T, LI J W, PANG Q, et al. Construction of microreactors for cascade reaction and their potential applications as antibacterial agents[J]. ACS Applied Materials & Interfaces, 2019, 11 (7): 6789-6795.
[21] MIAO H, ZHONG D, ZHOU Z N, et al. Papain-templated Cu nanoclusters: assaying and exhibiting dramatically antibacterial activity cooperating with H2O2 [J]. Nanoscale, 2015, 7 (45): 19066-19072.