|本期目录/Table of Contents|

[1]廖腾飞,苏春平,卢 潼,等.贵金属涂层超亲水-超疏水转化研究[J].武汉工程大学学报,2022,44(06):624-628.[doi:10.19843/j.cnki.CN42-1779/TQ.202202001]
 LIAO Tengfei,SU Chunping,LU Tong,et al.Transformation Between Superhydrophilicity and Superhydrophobicity of Precious Metal Coating[J].Journal of Wuhan Institute of Technology,2022,44(06):624-628.[doi:10.19843/j.cnki.CN42-1779/TQ.202202001]
点击复制

贵金属涂层超亲水-超疏水转化研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年06期
页码:
624-628
栏目:
化学与化学工程
出版日期:
2022-12-31

文章信息/Info

Title:
Transformation Between Superhydrophilicity and Superhydrophobicity of Precious Metal Coating
文章编号:
1674 - 2869(2022)06 - 0624 - 05
作者:
廖腾飞苏春平卢 潼肖 倩彭冬梅杨 浩*
武汉工程大学环境生态与生物工程学院,绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
LIAO TengfeiSU ChunpingLU TongXIAO QianPENG DongmeiYANG Hao*
School of Environmental Ecology Biological Engineering, Wuhan Institute of Technology;Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education, Wuhan 430205, China

关键词:
超亲水超疏水贵金属黄铜网润湿性转变
Keywords:
superhydrophilicity superhydrophobicity precious metal brass mesh wettability transition
分类号:
O647.5
DOI:
10.19843/j.cnki.CN42-1779/TQ.202202001
文献标志码:
A
摘要:
为了探究贵金属涂层在空气中润湿性能,采用化学镀法在黄铜网表面成功制备了Au、Ag、Pt和Pd涂层,研究了涂层在空气中由超亲水向超疏水转化的变化速率。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、接触角测量仪对涂层的组成、形貌和润湿性进行表征,探讨了不同涂层表面形貌结构及化学组成对润湿性变化的影响。结果表明:放置9 d后Pd涂层表面有机碳含量最低,而Pd涂层水接触角增加最慢。同时Pt涂层虽然在初期水接触角增加较快,但因为其不具有微纳米双微观结构,最终的水接触角最小。因此涂层润湿性变化快慢与表面吸附空气中有机碳含量有关,而最终水接触角大小取决于涂层的表面微观结构。
Abstract:
To investigate the wettability of different precious metal coatings in air, Au, Ag, Pt, and Pd coatings were successfully prepared on brass screen surface via electroless plating method. The wettability transition ratio between superhydrophilicity and superhydrophobicity in air was studied. The coatings’ chemical composition, morphology, and surface wettability were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and optical contact angle meter. The effects of surface morphology and chemical composition on the wettability transition of different coatings were investigated. The results showed that C content of the Pd coating after 9 d exposure in air is the least, and the increase of water contact angle is the slowest. Meanwhile, the contact angle of Pt coating increases rapidly in the initial stage, however its final contact angle is the least due to the lack of micro-nano binary structures. Therefore, the wettability transition ratio of the coating is related to the content of organic carbon absorbed by the surface, and the final water contact angle depends on the surface microstructure of the coating.

参考文献/References:

[1] JUNG Y C, BHUSHAN B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity[J]. Langmuir, 2009, 25(24): 14165-14173.

[2] LIU K S, YAO X, JIANG L.Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.
[3] 余俊.超疏水不锈钢网的制备及其油水分离的应用研究[D].武汉:武汉工程大学, 2018.
[4] 鄢宁波. 铜基特殊润湿性表面的制备与应用研究[D].武汉:武汉工程大学, 2016.
[5] WANG G, ZENG Z X, WANG H, et al. Low drag porous ship with superhydrophobic and superoleophilic surface for oil spills cleanup[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26184-26194.
[6] LU Y, SATHASIVAM S, SONG J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil [J]. Science, 2015, 347(6226): 1132-1135.
[7] 宋爽. 特殊润湿性材料在油水分离中的应用研究[D].武汉:武汉工程大学, 2017.
[8] OU J F, HU W H, XUE M S, et al. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3101-3107.
[9] HU Y W, LIU S, HUANG S Y, et al. Superhy-drophobicity and surface enhanced Raman scattering activity of dendritic silver layers[J]. Thin Solid Films, 2010, 519(4): 1314-1318.
[10] SAFAEE A, SARKAR D K, FARZANEH M. Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction[J]. Applied Surface Science, 2008, 254(8):2493-2498.
[11] LIU Y, LI S Y, WANG Y M, et al. Superhy-drophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: wettability and corrosion inhibition[J]. Journal of Colloid and Interface Science, 2016, 478: 164-171.
[12] KHAN A, SOHAIL S, JACOB C. The fabrication of stable superhydrophobic surfaces using a thin Au/Pd coating over a hydrophilic 3C-SiC nanorod network[J]. Applied Surface Science, 2015, 353: 964-972.
[13] XU P H, WANG F J, YANG C, et al. Reversible transition between superhydrophobicity and superhydrophilicity of a silver surface [J]. Surface & Coatings Technology, 2016, 294: 47-53.
[14] LIU P, CAO L, ZHAO W, et al. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons [J]. Applied Surface Science, 2015, 324: 576-583.
[15] CHENG Y Y, LU S X, XU W G, et al. Fabrication of superhydrophobic Au-Zn alloy surface on a zinc substrate for roll-down, self-cleaning and anti-corrosion properties[J]. Journal of Materials Chemistry A, 2015, 3(32): 16774-16784.
[16] LARMOUR I A, BELL S E J, SAUNDERS G C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J]. Angewandte Chemie (International Edition), 2007, 46(10): 1710-1712.
[17] 李艳峰, 于志家, 于跃飞, 等. 化学刻蚀法制备黄铜基超疏水表面[J]. 化工学报,2007,(12): 117-3121.
[18] SONG W, ZHANG J J, XIE Y F, et al. Large-area unmodified superhydrophobic copper substrate can be prepared by an electroless replacement deposition [J]. Journal of Colloid and Interface Science, 2009, 329(1): 208-211.
[19] CHAPMAN J, REGAN F. Nanofunctionalized sup-erhydrophobic antifouling coatings for environmental sensor applicationsuadvancing deployment with answers from nature[J]. Advanced Engineering Materials, 2012, 14(4): B175-B184.
[20] PENG Z B, YANG R, KIM M A, et al. Influence of O-2, H2O and airborne hydrocarbons on the properties of selected 2D materials [J]. RSC Advances, 2017, 7(43): 27048-27057.
[21] XU X H, ZHANG Z Z, YANG J. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method [J]. Langmuir, 2010, 26(5): 3654-3658.
[22] FENG X J, SHI Y L, WANG Y S, et al. Preparation of superhydrophobic silver nano coatings with feather-like structures by electroless galvanic deposition[J]. Chinese Science Bulletin, 2013, 58(16):1887-1891.
[23] NING T, XU W G, LU S X. Fabrication of sup-erhydrophobic surfaces on zinc substrates and their application as effective corrosion barriers [J]. Applied Surface Science, 2011, 258(4):1359-1365.
[24] GUO W T, CHEN B, VAN LAM D, et al. Effect of airborne hydrocarbons on the wettability of phase change nanoparticle decorated surfaces[J]. ACS Nano, 2019, 13(11): 13430-13438.
[25] CAI B, GUI Z Z, GUO T, et al. Fabrication of self-recovering superhydrophobic Cu-CNTs composite coatings via co-electrodeposition: wettability transition is due to spontaneous adsorption of airborne hydrocarbons[J]. Colloid and Interface Science Communications, 2022, 46:2215-2224.
[26] YANG Z, LIU X P, TIAN Y L. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J]. Journal of Colloid and Interface Science, 2019, 533: 268-277.
[27] ALINEZHADFAR M, ABAD S N K, MOZAMMEL M. Multifunctional cobalt coating with exceptional amphiphobic properties: self-cleaning and corrosion inhibition[J]. Surfaces and Interfaces, 2020, 21: 100744.
[28] CAO Z W, XIAO D B, KANG L T, et al. Superhy-drophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with Ag(NH3)2 OH [J]. Chemical Communications, 2008, 23: 2692-2694.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-02-02
基金项目:武汉工程大学第十二届研究生教育创新基金(CX2020340)
作者简介:廖腾飞,硕士研究生。 E-mail:[email protected]
*通讯作者:杨 浩,博士,教授。 E-mail: [email protected]
引文格式:廖腾飞,苏春平,卢潼,等. 贵金属涂层超亲水-超疏水转化性能研究[J]. 武汉工程大学学报,2022,44(6):624-628.

更新日期/Last Update: 2023-01-08