[2] LIU K S, YAO X, JIANG L.Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.
[3] 余俊.超疏水不锈钢网的制备及其油水分离的应用研究[D].武汉:武汉工程大学, 2018.
[4] 鄢宁波. 铜基特殊润湿性表面的制备与应用研究[D].武汉:武汉工程大学, 2016.
[5] WANG G, ZENG Z X, WANG H, et al. Low drag porous ship with superhydrophobic and superoleophilic surface for oil spills cleanup[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26184-26194.
[6] LU Y, SATHASIVAM S, SONG J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil [J]. Science, 2015, 347(6226): 1132-1135.
[7] 宋爽. 特殊润湿性材料在油水分离中的应用研究[D].武汉:武汉工程大学, 2017.
[8] OU J F, HU W H, XUE M S, et al. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3101-3107.
[9] HU Y W, LIU S, HUANG S Y, et al. Superhy-drophobicity and surface enhanced Raman scattering activity of dendritic silver layers[J]. Thin Solid Films, 2010, 519(4): 1314-1318.
[10] SAFAEE A, SARKAR D K, FARZANEH M. Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction[J]. Applied Surface Science, 2008, 254(8):2493-2498.
[11] LIU Y, LI S Y, WANG Y M, et al. Superhy-drophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: wettability and corrosion inhibition[J]. Journal of Colloid and Interface Science, 2016, 478: 164-171.
[12] KHAN A, SOHAIL S, JACOB C. The fabrication of stable superhydrophobic surfaces using a thin Au/Pd coating over a hydrophilic 3C-SiC nanorod network[J]. Applied Surface Science, 2015, 353: 964-972.
[13] XU P H, WANG F J, YANG C, et al. Reversible transition between superhydrophobicity and superhydrophilicity of a silver surface [J]. Surface & Coatings Technology, 2016, 294: 47-53.
[14] LIU P, CAO L, ZHAO W, et al. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons [J]. Applied Surface Science, 2015, 324: 576-583.
[15] CHENG Y Y, LU S X, XU W G, et al. Fabrication of superhydrophobic Au-Zn alloy surface on a zinc substrate for roll-down, self-cleaning and anti-corrosion properties[J]. Journal of Materials Chemistry A, 2015, 3(32): 16774-16784.
[16] LARMOUR I A, BELL S E J, SAUNDERS G C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J]. Angewandte Chemie (International Edition), 2007, 46(10): 1710-1712.
[17] 李艳峰, 于志家, 于跃飞, 等. 化学刻蚀法制备黄铜基超疏水表面[J]. 化工学报,2007,(12): 117-3121.
[18] SONG W, ZHANG J J, XIE Y F, et al. Large-area unmodified superhydrophobic copper substrate can be prepared by an electroless replacement deposition [J]. Journal of Colloid and Interface Science, 2009, 329(1): 208-211.
[19] CHAPMAN J, REGAN F. Nanofunctionalized sup-erhydrophobic antifouling coatings for environmental sensor applicationsuadvancing deployment with answers from nature[J]. Advanced Engineering Materials, 2012, 14(4): B175-B184.
[20] PENG Z B, YANG R, KIM M A, et al. Influence of O-2, H2O and airborne hydrocarbons on the properties of selected 2D materials [J]. RSC Advances, 2017, 7(43): 27048-27057.
[21] XU X H, ZHANG Z Z, YANG J. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method [J]. Langmuir, 2010, 26(5): 3654-3658.
[22] FENG X J, SHI Y L, WANG Y S, et al. Preparation of superhydrophobic silver nano coatings with feather-like structures by electroless galvanic deposition[J]. Chinese Science Bulletin, 2013, 58(16):1887-1891.
[23] NING T, XU W G, LU S X. Fabrication of sup-erhydrophobic surfaces on zinc substrates and their application as effective corrosion barriers [J]. Applied Surface Science, 2011, 258(4):1359-1365.
[24] GUO W T, CHEN B, VAN LAM D, et al. Effect of airborne hydrocarbons on the wettability of phase change nanoparticle decorated surfaces[J]. ACS Nano, 2019, 13(11): 13430-13438.
[25] CAI B, GUI Z Z, GUO T, et al. Fabrication of self-recovering superhydrophobic Cu-CNTs composite coatings via co-electrodeposition: wettability transition is due to spontaneous adsorption of airborne hydrocarbons[J]. Colloid and Interface Science Communications, 2022, 46:2215-2224.
[26] YANG Z, LIU X P, TIAN Y L. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J]. Journal of Colloid and Interface Science, 2019, 533: 268-277.
[27] ALINEZHADFAR M, ABAD S N K, MOZAMMEL M. Multifunctional cobalt coating with exceptional amphiphobic properties: self-cleaning and corrosion inhibition[J]. Surfaces and Interfaces, 2020, 21: 100744.
[28] CAO Z W, XIAO D B, KANG L T, et al. Superhy-drophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with Ag(NH3)2 OH [J]. Chemical Communications, 2008, 23: 2692-2694.