[2] CHEN K, GONG S G, XIANG T, et al. Cumulative attribute space for age and crowd density estimation[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland: IEEE, 2013: 2467-2474.
[3] 田月媛,邓淼磊,高辉,等.基于深度学习的人群计数算法综述[J].电子测量技术,2022,45(7):152-159.
[4] 卢振坤,刘胜,钟乐,等.人群计数研究综述[J].计算机工程与应用, 2022,58(11):33-46.
[5] 余鹰,朱慧琳,钱进,等.基于深度学习的人群计数研究综述[J].计算机研究与发展,2021,58(12):2724-2747.
[6] ZHANG C, LI H S, WANG X G, et al. Cross-scene crowd counting via deep convolutional neural networks[C]// IEEE Conference on Computer Vision & Pattern Recognition (CVPR). Boston: IEEE, 2015: 833-841.
[7] ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-Image crowd counting via multi-column convolutional neural network[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 589-597.
[8] SHI M J, YANG Z H, XU C, et al. Revisiting perspective information for efficient crowd counting[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 7271-7280.
[9] LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 1091-1100.
[10] LIU N, LONG Y C, ZOU C Q, et al. ADCrowdNet: an attention-injective deformable convolutional network for crowd understanding[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 3220-3229.
[11] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). Berlin: Springer, 2018: 3-19.
[12] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(2): 652-662.
[13] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations (ICLR). San Diego: OpenReview.net, 2015: 1-14.
[14] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(8): 2011-2023.
[15] SINDAGI V A, PATEL V M. Generating high-quality crowd density maps using contextual pyramid CNNs[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 1879-1888.
[16] SHI M J, YANG Z H, XU C, et al. Revisiting perspective information for efficient crowd counting[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 7271-7280.
[17] WU X J, ZHENG Y B, YE H, et al. Adaptive scenario discovery for crowd counting[C]// ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton: IEEE, 2019: 2382-2386.
[18] LIU W Z, SALZMANN M, FUA P. Context-aware crowd counting[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 5094-5103.
[19] 吴奇元,王晓东,章联军,等.融合注意力机制与上下文密度图的人群计数网络[J].计算机工程,2022,48(5):235-241+250.
[20] SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 4031-4039.