[1] 庄铃强,吴能森,余凌锋,等. 某软土深基坑降水开挖地表沉降及影响因素分析[J].武汉工程大学学报,2020,42(6):663-668.
[2] 郑周,叶晓江,候志坚,等. 碳纳米管纳米流体对液冷式CPU换热性能的改善[J].武汉工程大学学报,2016,38(6):594-598.
[3] 刘生鹏,高秋,胡仙林,等. 吸油材料的研究进展[J].武汉工程大学学报,2013,35(12):27-34.
[4] 郁伯铭. 多孔介质输运性质的分形分析研究进展[J].力学进展,2003,33(3):333-346.
[5] YU B M.Analysis of flow in fractal porous media[J].Applied Mechanics Reviews,2008,61(5):050801.
[6] 杨胜来,魏俊之.油藏物理学[M].北京:石油大学出版社,2006: 157-158.
[7] CARMAN P C.Permeability of saturated sands, soils and clays[J]. The journal of Agricultural Science, 1939, 29(2): 263-273.
[8] 郑斌,李菊花. 基于Kozeny-Carman方程的渗透率分形模型[J].天然气地球科学,2015,26(1):193-198.
[9] XU P , YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74-81.
[10] XIAO B Q, TU X, REN W, et al. Modeling for hydraulic permeability and Kozeny-Carman constant of porous nanofibers using a fractal approach[J]. Fractal, 2015,23(3): 1550029.
[11] WEI W, CAI J C, XIAO J F, et al. Kozeny-Carman constant of porous media: Insights from fractal-capillary imbibition theory[J]. Fuel,2018,234: 1373-1379.
[12] XIAO B Q, WANG W, ZHANG X, et al. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of soild particles and porous fibers[J]. Powder Technology,2019,349: 92-98.
[13] XIAO B Q, ZHANG Y D, WANG Y, et al. A fractal model for Kozeny-Carman constant and dimensionless permeability of fibrous porous media with roughened surfaces[J]. Fractals,2019,27(7): 1950116-1950128.
[14] ZHENG Q, XU J, YANG B, et al. Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network[J]. Physica A, 2013,392(6): 1557-1566.
[15] 王世芳,吴涛,邓永菊,等. 随机分布树状分叉网络渗流特性的分形研究[J].华中师范大学学报(自然科学版) ,2012,46(4):406-409.
[16] 徐鹏. 树状分形分叉网络的输运特性[D]. 武汉:华中科技大学,2008.
[17] WANG S F, YU B M. Study of the effect of capillary pressure on the permeability of porous media embedded with a fractal-like tree network[J]. International Journal of Multiphase Flow,2011,37(5): 507-513.
[18] 李艳,郁伯铭. 分叉网络的启动压力梯度研究[J]. 中国科学,2011,41(4):525-531.
[19] BEAR J. Dynamics of fluids in porous media[M]. New York : American Elsevier , 1972.
[20] DULLIEN F A L. Porous media, fluid transport and pore structure [M]. 2nd ed.San Diego : Academic Press,1992.
[21] SULLIVAN R R. Specific surface measurement on compact bundles of parallel fibers[J]. Journal of Applied Physics,1942, 13(11):725-730.
[22] 徐鹏,邱淑霞,姜舟婷,等. 各向同性多孔介质中Kozeny-Carman常数的分形分析[J]. 重庆大学报,2011,34(4):78-82.
[23] DAVIES L, DOLLIMORE D. Theoretical and experimental values for the parameter k of the Kozeny-Carman equation as applied to sedimenting suspensions[J]. Journal of Physics D,1980,13(11):2013-2020.
[24] SPARROW E M, LOEFFLER A L. Longitudinal laminar flow between cylinders arranged in regular array[J]. AIChE Journal, 1959, 5(3):325-330.
[25] HAPPEL J, BRENNER H. Low Reynolds number hydrodynamics: with special applications to particulate media[M]. Vol 1. The Hague: Nijhoff,1986.
[26] KYAN C P, WASAN D T, KINTNER R C. Flow of single-phase fluids through fibrous beds[J]. Industrial & Engineering Chemistry Fundamentals,1970,9(4):596-603.
[27] SAHRAOUI M, KAVIANY M. Slip and no-slip boundary condition at interface of porous plain media[J]. International Journal of Heat and Mass Transfer, 1992, 35(4):927-943.