|本期目录/Table of Contents|

[1]李子豪,肖波齐*,王培龙,等.树状分叉网络Kozeny-Carman 常数的分形分析[J].武汉工程大学学报,2022,44(06):670-674.[doi:10.19843/j.cnki.CN42-1779/TQ.202206029]
 LI Zihao,XIAO Boqi*,WANG Peilong,et al.Fractal Analysis of Kozeny-Carman Constant of Tree Bifurcation Network[J].Journal of Wuhan Institute of Technology,2022,44(06):670-674.[doi:10.19843/j.cnki.CN42-1779/TQ.202206029]
点击复制

树状分叉网络Kozeny-Carman 常数的分形分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年06期
页码:
670-674
栏目:
机电与信息工程
出版日期:
2022-12-31

文章信息/Info

Title:
Fractal Analysis of Kozeny-Carman Constant of Tree Bifurcation Network
文章编号:
1674 - 2869(2022)06 - 0670 - 05
作者:
李子豪肖波齐*王培龙朱怀志龙恭博
武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
LI Zihao XIAO Boqi* WANG Peilong ZHU Huaizhi LONG Gongbo
School of Mechanical and Electrical Engineering , Wuhan Institute of Technology,Wuhan 430205,China
关键词:
树状分叉Kozeny-Carman常数孔隙率
Keywords:
tree-like bifurcation Kozeny-Carman constant porosity
分类号:
O357.3
DOI:
10.19843/j.cnki.CN42-1779/TQ.202206029
文献标志码:
A
摘要:
鉴于目前树状分叉网络的KC常数解析表达式尚未知。本文利用分形理论研究了树状分叉网络中的流体运输,计算出了树状分叉网络的有效渗透率,进一步推导出了嵌入在多孔介质中的树状分叉网络复合材料的KC常数的解析表达式,并且讨论了网络微观结构参数对KC常数的影响。结果发现,KC常数不仅与网络微观结构参数有关,还与孔隙率有关。结果表明KC常数随着树状分叉网络长度比和孔隙率的增加而增大,随着直径比的增加而减小。当孔隙率在0.3附近时,KC常数预测值接近经典KC常数值(5)。

Abstract:
Given that the current analytical expressions for the Kozeny-Carman (KC) constants for the tree bifurcation network are not known. In this paper, we used fractal theory to study fluid transport in tree bifurcation networks, calculated the effective permeability, further derived analytical expressions for the KC constants of tree bifurcation network composites embedded in porous medium, and discussed the effect of network microstructure parameters on the KC constants. It is found that the KC constants are related to the network microstructure parameters and porosities. The results show that the KC constants increase with the increase of the length ratios and porosities, and decrease with the increase of the diameter ratios. The KC constant is close to the classical KC constant(5) when the porosity is around 0.3.

参考文献/References:

[1] 庄铃强,吴能森,余凌锋,等. 某软土深基坑降水开挖地表沉降及影响因素分析[J].武汉工程大学学报,2020,42(6):663-668.
[2] 郑周,叶晓江,候志坚,等. 碳纳米管纳米流体对液冷式CPU换热性能的改善[J].武汉工程大学学报,2016,38(6):594-598.
[3] 刘生鹏,高秋,胡仙林,等. 吸油材料的研究进展[J].武汉工程大学学报,2013,35(12):27-34.
[4] 郁伯铭. 多孔介质输运性质的分形分析研究进展[J].力学进展,2003,33(3):333-346.
[5] YU B M.Analysis of flow in fractal porous media[J].Applied Mechanics Reviews,2008,61(5):050801.
[6] 杨胜来,魏俊之.油藏物理学[M].北京:石油大学出版社,2006: 157-158.
[7] CARMAN P C.Permeability of saturated sands, soils and clays[J]. The journal of Agricultural Science, 1939, 29(2): 263-273.
[8] 郑斌,李菊花. 基于Kozeny-Carman方程的渗透率分形模型[J].天然气地球科学,2015,26(1):193-198.
[9] XU P , YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources, 2008, 31(1): 74-81.
[10] XIAO B Q, TU X, REN W, et al. Modeling for hydraulic permeability and Kozeny-Carman constant of porous nanofibers using a fractal approach[J]. Fractal, 2015,23(3): 1550029.
[11] WEI W, CAI J C, XIAO J F, et al. Kozeny-Carman constant of porous media: Insights from fractal-capillary imbibition theory[J]. Fuel,2018,234: 1373-1379.
[12] XIAO B Q, WANG W, ZHANG X, et al. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of soild particles and porous fibers[J]. Powder Technology,2019,349: 92-98.
[13] XIAO B Q, ZHANG Y D, WANG Y, et al. A fractal model for Kozeny-Carman constant and dimensionless permeability of fibrous porous media with roughened surfaces[J]. Fractals,2019,27(7): 1950116-1950128.
[14] ZHENG Q, XU J, YANG B, et al. Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network[J]. Physica A, 2013,392(6): 1557-1566.
[15] 王世芳,吴涛,邓永菊,等. 随机分布树状分叉网络渗流特性的分形研究[J].华中师范大学学报(自然科学版) ,2012,46(4):406-409.
[16] 徐鹏. 树状分形分叉网络的输运特性[D]. 武汉:华中科技大学,2008.
[17] WANG S F, YU B M. Study of the effect of capillary pressure on the permeability of porous media embedded with a fractal-like tree network[J]. International Journal of Multiphase Flow,2011,37(5): 507-513.
[18] 李艳,郁伯铭. 分叉网络的启动压力梯度研究[J]. 中国科学,2011,41(4):525-531.
[19] BEAR J. Dynamics of fluids in porous media[M]. New York : American Elsevier , 1972.
[20] DULLIEN F A L. Porous media, fluid transport and pore structure [M]. 2nd ed.San Diego : Academic Press,1992.
[21] SULLIVAN R R. Specific surface measurement on compact bundles of parallel fibers[J]. Journal of Applied Physics,1942, 13(11):725-730.
[22] 徐鹏,邱淑霞,姜舟婷,等. 各向同性多孔介质中Kozeny-Carman常数的分形分析[J]. 重庆大学报,2011,34(4):78-82.
[23] DAVIES L, DOLLIMORE D. Theoretical and experimental values for the parameter k of the Kozeny-Carman equation as applied to sedimenting suspensions[J]. Journal of Physics D,1980,13(11):2013-2020.
[24] SPARROW E M, LOEFFLER A L. Longitudinal laminar flow between cylinders arranged in regular array[J]. AIChE Journal, 1959, 5(3):325-330.
[25] HAPPEL J, BRENNER H. Low Reynolds number hydrodynamics: with special applications to particulate media[M]. Vol 1. The Hague: Nijhoff,1986.
[26] KYAN C P, WASAN D T, KINTNER R C. Flow of single-phase fluids through fibrous beds[J]. Industrial & Engineering Chemistry Fundamentals,1970,9(4):596-603.
[27] SAHRAOUI M, KAVIANY M. Slip and no-slip boundary condition at interface of porous plain media[J]. International Journal of Heat and Mass Transfer, 1992, 35(4):927-943.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-06-21
基金项目:知识创新专项-基础研究项目(2022020801010353)
作者简介:李子豪,硕士研究生。E-mail:[email protected]
*通讯作者:肖波齐,博士,教授。E-mail:[email protected]
引文格式:李子豪,肖波齐,王培龙,等. 树状分叉网络Kozeny-Carman常数的分形分析[J]. 武汉工程大学学报,2022,44(6):670-674.

更新日期/Last Update: 2023-01-09