|本期目录/Table of Contents|

[1]康睿娴,汪 燚,郭园萍,等.大孔树脂对增甘膦盐溶液Ca2+去除性能研究[J].武汉工程大学学报,2023,45(03):299-304.[doi:10.19843/j.cnki.CN42-1779/TQ.202108007]
 KANG Ruixian,WANG Yi,GUO Yuanping,et al.Removal of Ca2+ from Glyphosine Salt Solution by Macroporous Resin[J].Journal of Wuhan Institute of Technology,2023,45(03):299-304.[doi:10.19843/j.cnki.CN42-1779/TQ.202108007]
点击复制

大孔树脂对增甘膦盐溶液Ca2+去除性能研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年03期
页码:
299-304
栏目:
生物与环境工程
出版日期:
2023-06-30

文章信息/Info

Title:
Removal of Ca2+ from Glyphosine Salt Solution by Macroporous Resin
文章编号:
1674 - 2869(2023)03 - 0299 - 06
作者:
康睿娴1汪 燚1郭园萍1汪 荣1余军霞*1池汝安12
1.武汉工程大学化学与环境工程学院,绿色化工过程教育部重点实验室(武汉工程大学),
湖北 武汉 430205;
2. 湖北三峡实验室,湖北 宜昌 443008
Author(s):
KANG Ruixian1WANG Yi1 GUO Yuanping1 WANG Rong1 YU Junxia*1 CHI Ru’an12
1. School of Chemistry and Environmental?Engineering, Wuhan Institute of Technology;? Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education, Wuhan?430205,?China;
2. Hubei Three Gorges Laboratory,Yichang 443008,China
关键词:
大孔阳离子交换树脂增甘膦脱钙吸附
Keywords:
macroporous cation exchange resin glyphosine decalcification adsorption

分类号:
X78
DOI:
10.19843/j.cnki.CN42-1779/TQ.202108007
文献标志码:
A
摘要:
采用大孔阳离子交换树脂对增甘膦钙溶液进行脱钙处理,重点探讨了该树脂对Ca2+的等温和动力学吸附行为,研究了pH对其吸附性能的影响及树脂的重复使用性,并对钙离子脱除机理进行了研究。结果表明:该树脂对Ca2+的吸附不受溶液初始pH影响,在20 min内即可达到平衡,最大吸附量为52.87 mg/g,且经5次重复利用后,对Ca2+的回收率仍可维持在98.2%以上;该过程符合Langmuir等温吸附模型、准二级动力学模型,另外,该树脂在处理实际增甘膦溶液时可实现钙离子的高效脱除;机理分析表明该树脂对Ca2+吸附以离子交换反应为主。这为复杂有机废液中钙的分离脱除提供了有益的理论参考。

Abstract:
In this work, macroporous cation exchange resin was used for the selective removal of Ca2+ ions from glyphosine calcium solution. The adsorption isotherm, kinetic, pH effect, and the reusability of macroporous resin were studied. Further, the adsorption mechanism was explored based on the Fourier infrared spectroscopy. The results showed that the adsorption of Ca2+ is barely affected by the initial solution pH, and it reaches the equilibrium within 20 min, with a maximum adsorption capacity of 52.87 mg/g. The adsorption process is in accordance with the Langmuir isothermal adsorption model, the pseudo-first-order and pseudo-second-order kinetic models, respectively. After reusing the resin five times, the recovery efficiency of Ca2+ still remains above 98.2%. Moreover, in practical glyphosine calcium solution, the Ca2+ ions can also be removed efficiently by using the resin as an adsorbent. The mechanism analysis showed that Ca2+ is adsorbed onto the resin mainly through ion exchange. Overall, this study provides a theoretical reference for the separation and removal of calcium ions from the complex organic wastewater.

参考文献/References:

[1] 杨光亮.草甘膦行业发展回顾及展望[J].精细与专用化学品,2009(5):18-20.

[2] 周曙光,詹波,祝小红,等. 草甘膦母液处理技术新进展[J].中国农药,2012,8(5):5-8.
[3] 叶维丽,王娜.推进草甘膦生产企业磷污染治理[J].农药市场信息,2018(15):22-23.
[4] 高立蕊,胡景焕,李福祥.甘氨酸-亚磷酸二甲酯法合成草甘膦的研究[J].山西化工,2011,31(3):15-18.
[5] 赵经纬.草甘膦母液处理技术实践与最新进展[J].中国农药,2011(7):18-20.
[6] LIU Z Y,ZHU M X,YU P, et al. Pretreatment of membrane separation of glyphosate mother liquor using a precipitation method[J]. Desalination, 2013,313:140-144.
[7] XIAO G Q,MENG Q. D151 resin preloaded with Fe3+ as a salt resistant adsorbent for glyphosate from water in the presence 16% NaCl[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110140:1-6.
[8] 刘志英,倪凤,谢明,等.草甘膦母液膜分离的电渗析预处理[J].环境工程学报,2011,5(10): 2242-2246.
[9] 于宇.基于微波-fenton法处理草甘膦废水工艺技术研究[D]. 济南:山东大学,2015.
[10] 申元丽,马金锋,赵旭,等.臭氧氧化降解除草剂草甘膦的实验研究[J].环境科学学报,2011,31(8):1647- 1652.
[11] WU H, SUN Q, CHEN J Y, et al.Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate[J]. Chemical Engineering Journal, 2021, 425:130640:1-13.
[12] 汤捷,贾少伟,李明,等.多维电催化工艺处理草甘膦废水技术研究[J].现代农药,2010, 9(3):19-22.
[13] FENG D, MALLERET L, CHIAVASSA G, et al. Biodegradation capabilities of acclimated activated sludge towards glyphosate: experimental study and kinetic modeling[J]. Biochemical Engineering Journal, 2020, 161: 107643:1-7.
[14] XIE M, LIU Z Y, XU Y H. Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration[J]. Journal of Hazardous Materials,2010,181(1/2/3): 975-980.
[15] 徐明礼,崔世海,王玉萍,等.草甘膦生产废水的预处理与综合利用[J].南京师范大学学报(工程技术版),2007(1):51-53.
[16] 倪凤,刘志英,徐炎华.钙盐沉淀法处理草甘膦母液的试验研究[J]. 工业水处理, 2011, 31(7): 39-41.
[17] 汪德良,王广珠,崔焕芳等.001×7树脂理化性能与工艺性能关系的研究[J].热力发电, 2000(1):42-46.
[18] LANGMUIR I. Adsorption of gases on glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
[19] JIA D, ZHOU C, LI C. Adsorption of glyphosate on resin supported by hydrated iron oxide: equilibrium and kinetic studies[J]. Water Environment Research, 2011, 83(9):784-790.
[20] ALLEN S J,GAN Q, MATTHEW R, et al. Comparison of optimised isotherm models for basic dye adsorption by kudzu[J]. Bioresour Technol, 2003, 88(2): 143-152.
[21] HO Y S. Citation review of Lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics, 2004, 59(1): 171-177.
[22] HO Y S, MCKAY G, Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465.
[23] 成倩兰, 张豪, 刘雁,等. 焙烧磷尾矿处理含磷废水的研究[J]. 武汉工程大学学报, 2021,43(5):496-499.
[24] 商文贤, 徐宏英, 王俊伟,等. 有机氯农药的微生物降解[J]. 化学与生物工程, 2022, 39(3):12-18.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-08-20
基金项目:国家重点研发计划项目(?2019YFC1905803);湖北三峡实验室开放创新基金(SC213001)
作者简介:康睿娴,硕士研究生。E-mail:[email protected]
*通讯作者:余军霞,博士,教授。E-mail:[email protected]
引文格式:康睿娴,汪燚,郭园萍,等. 分离草甘膦母液中增甘膦钙盐的脱钙研究[J]. 武汉工程大学学报,2023,45(3):299-304,348.

更新日期/Last Update: 2023-07-03