|本期目录/Table of Contents|

[1]刘园园,李雅琴*.基于图书语义特征的推荐模型[J].武汉工程大学学报,2023,45(03):319-324.[doi:10.19843/j.cnki.CN42-1779/TQ. 202303025]
 LIU Yuanyuan,LI Yaqin*.Recommendation Model Based on Book Semantic Features[J].Journal of Wuhan Institute of Technology,2023,45(03):319-324.[doi:10.19843/j.cnki.CN42-1779/TQ. 202303025]
点击复制

基于图书语义特征的推荐模型(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年03期
页码:
319-324
栏目:
机电与信息工程
出版日期:
2023-06-30

文章信息/Info

Title:
Recommendation Model Based on Book Semantic Features
文章编号:
1674 - 2869(2023)03 - 0319 - 06
作者:
刘园园1李雅琴*2
1. 武汉轻工大学图书馆,湖北 武汉 430023;
2. 武汉轻工大学数学与计算机学院,湖北 武汉 430023
Author(s):
LIU Yuanyuan1 LI Yaqin*2
1. Library, Wuhan Polytechnic University, Wuhan 430023,China;
2. School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023,China
关键词:
语义特征预训练模型文本卷积神经网络
Keywords:
semantic features BERT TextCNN
分类号:
TP391
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202303025
文献标志码:
A
摘要:
为了充分利用图书丰富的文本信息,更准确地表达图书属性,为读者提供更精准的图书推荐服务,提出了一种基于图书语义特征的深度学习推荐模型。该模型将预训练模型(BERT)与文本卷积神经网络(TextCNN)相结合提取图书语义特征。首先利用BERT网络对图书书名、内容摘要等图书文本信息生成向量表示;然后将获得的字向量通过TextCNN模型抽取文本局部特征,再与句向量一起输入神经网络进行训练,得到图书向量;最后将提取的图书特征与读者年龄、性别、专业等人口属性特征拼接后输入多层神经网络进行模型训练,获得预测结果。实验结果表明:所提出的模型对比其他模型推荐效果有较大提升。
Abstract:
To provide readers with more accurate book recommendation services, the paper proposes a recommendation model based on book semantic features(deep semantics mining for book recommendation) for making full use of the rich text information of books to express the book attributes more accurately. This model combines bidirectional encoder representations from transformers (BERT) networks with text convolutional neural networks (TextCNN) to extract the book semantic features. Firstly, we used the BERT networks to generate the vector representation of the book text information such as book title and abstract. Then, the local features of the obtained word vectors were extracted through the TextCNN model, and were inputted together with the obtained sentence vectors into the neural networks for training to get the final book vectors. Finally, the book features and reader demographic features such as age, gender and specialty of readers were inputted into the neural networks for training to obtain expected results. Results show that the model proposed in this paper has significant improvement compared with other models.

参考文献/References:

[1] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J]. 计算机学报,2018,41(7):1619-1647.

[2] 刘华锋, 景丽萍,于剑.融合社交信息的矩阵分解推荐方法研究综述[J].软件学报,2018,29(2):340-362.
[3] 康雁, 卜荣景, 李浩等.基于增强注意力机制的神经协同过滤[J]. 计算机科学,2020,47(10):114-120.
[4] 董辉,盛魁,张继美.一种基于社交网络友情度的个性化推荐算法[J].武汉工程大学学报,2018,40(4):455-461.
[5] 许犇,徐国庆,程志宇,等.基于MGCNN的商品评论情感分析[J].武汉工程大学学报,2020,42(5):585-590.
[6] 汪然然,娄联堂.基于图像分析和深度学习的复合绝缘子憎水性分级[J].武汉工程大学学报,2021,43(5):580-585.
[7] BENGIO Y, DUCHARME R, VINCENT P, et al. A neuralprobabilistic language model[J].Journal of Machine LearningResearch,2003,3(6):1137-1155.
[8] MIKOLOV T, IKOLOV T, SUTSKEVER I, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2013:3111-3119.
[9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[10] ZHOU C T, SUN C L, LIU Z Y, et al. AC-LSTM neural network for text classification[J].arXivpreprint arXiv: 1511.08630, 2015.
[11] MARTINS G B, PAPA J P, ADELI H. Deep learning techniques for recommender systems based on collaborative filtering[J]. Expert Systems, 2020, 37(6):1-21.
[12] 程思,陶宏才.一种融合时间权值和用户行为序列的电影推荐模型[J].成都信息工程大学学报,2022,37(3):241-247.
[13] 陶涛, 郑凯,王一蕾,等.基于翻译结构的相对位置注意力机制推荐模型[J].计算机工程与设计,2021,42(10):2917-2923.
[14] 丁永刚,张雨琴,付强,等.基于SOM神经网络和排序因子分解机的图书资源精准推荐[J].情报理论与实践,2019,42(9):133-138,170.
[15] 尹婷婷, 曾宪玉. 深度学习视角下图书馆馆藏资源推荐模型设计与分析[J].现代情报, 2019, 39(4): 103-107,124.
[16] 沈凌云. 基于深度学习的图书馆借阅推荐方法研究[D].上海:上海财经大学,2020.
[17] 黄禹,张文德,张诗雨.基于深度距离分解的在线图书资源个性化推荐研究[J].情报科学, 2021,39(3):76-81.
[18] 刘园园. 基于深度学习的农业图书推荐算法研究[D]. 武汉:武汉轻工大学,2022.
[19] DEVLIN J, CHANG M W, LEE K, et al. Bert:pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: Association for Computational Linguistics, 2019: 4171-4186.
[20] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL,2014: 1746-1751.
[21] WEI S, YE N, ZHANG S, et al. Item-based collaborative filtering recommendation algorithm combining item category with interestingness measure[C]// 2012 International Conference on Computer Science and Service System. Nanjing:IEEE, 2012:2038-2041.
[22] JENATTON R,LE R N, BORDES A ,et al. A latent factor model for highly multi-relational data[C]// Advances in Neural Information Processing Systems 25 (NIPS 2012). Doha:NIPS,2012:3176-3184.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-03-17
基金项目:国家自然科学基金(61906140);湖北省自然科学基金杰出青年项目(2020CFA063);武汉轻工大学高等教育研究一般项目(2020GJKT013)
作者简介:刘园园,硕士,馆员。Email:[email protected]
*通讯作者:李雅琴,博士,副教授。Email:[email protected]
引文格式:刘园园,李雅琴. 基于图书语义特征的推荐模型[J]. 武汉工程大学学报,2023,45(3):319-324.

更新日期/Last Update: 2023-07-03