|本期目录/Table of Contents|

[1]宋宇迪,樊昊心,姚槐应*.纳米银胁迫下土壤微生物磷脂脂肪酸的响应特征[J].武汉工程大学学报,2023,45(06):655-662.[doi:10.19843/j.cnki.CN42-1779/TQ.202305003]
 SONG Yudi,FAN Haoxin,YAO Huaiying*.Response Characteristics of Soil Microbial Phospholipid Fatty Acids Under Silver Nanoparticles Stress[J].Journal of Wuhan Institute of Technology,2023,45(06):655-662.[doi:10.19843/j.cnki.CN42-1779/TQ.202305003]
点击复制

纳米银胁迫下土壤微生物磷脂脂肪酸的响应特征(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年06期
页码:
655-662
栏目:
生物与环境工程
出版日期:
2023-12-28

文章信息/Info

Title:
Response Characteristics of Soil Microbial Phospholipid Fatty Acids Under Silver Nanoparticles Stress
文章编号:
1674 - 2869(2023)06 - 0655 - 08
作者:
宋宇迪樊昊心姚槐应*
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
SONG Yudi FAN Haoxin YAO Huaiying*
School of Environmental Ecology and Biological engineering,Wuhan Institute of Technology,Wuhan 430205,China

关键词:
纳米银土壤微生物磷脂脂肪酸胁迫响应
Keywords:
silver nanoparticles soil microorganism phospholipid fatty acid stress response
分类号:
Q89
DOI:
10.19843/j.cnki.CN42-1779/TQ.202305003
文献标志码:
A
摘要:
通过检测不同纳米银粒子(AgNPs)质量分数下(0、10、100、1 000 mg·kg-1)土壤中微生物标志物磷脂脂肪酸 (PLFAs)含量的变化,探讨了AgNPs 对农田土壤微生物群落结构的影响。结果表明:随AgNPs质量分数增加,土壤微生物PLFA总含量和微生物PLFA多样性指数均显著降低;革兰氏阳性菌标志脂肪酸a15:0和i16:0、真菌标志脂肪酸18:2ω6c,以及革兰氏阴性菌标志脂肪酸16:1ω7c和18:1ω7c的丰度在不同质量分数AgNPs处理组间表现出显著差异,该结果体现了不同微生物类群对AgNPs的差异性响应特征。AgNPs显著影响了土壤微生物PLFAs含量和群落结构特征,因此需要对AgNPs在农田土壤中的生态风险进行系统评估和科学监管。

Abstract:
The influence of silver nanoparticles (AgNPs) on the microbial community structure in agricultural soil was investigated by assessing changes in the content of microbial biomarkers, namely phospholipid fatty acids (PLFAs), under different AgNPs mass fractions (0, 10, 100, 1 000 mg·kg-1). The results reveal that both the total content of microbial PLFAs and the microbial PLFA diversity index significantly decrease with an increase in AgNPs mass fraction. The abundances of gram-positive bacterial marker fatty acids a15:0 and i16:0, fungal marker fatty acid 18:2 ω6c, as well as gram-negative bacterial marker fatty acids 16:1 ω7c and 18:1 ω7c, exhibit significant variations among different AgNPs treatment groups, indicating distinctive responses of different microbial groups to AgNPs. AgNPs significantly impact the content and community structure of soil microbial PLFAs, highlighting the need for a systematic assessment and scientific regulation of the ecological risks of AgNPs in agricultural soil.

参考文献/References:

[1] REIDY B, HAASE A, LUCH A, et al. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future atudies and applications[J]. Materials, 2013, 6 (6): 2295-2350.

[2] MCGILLICUDDY E, MURRAY I, KAVANAGH S, et al. Silver nanoparticles in the environment: sources, detection and ecotoxicology[J]. Science of the Total Environment, 2017, 575: 231-246.
[3] PACHAPUR V L, LARIOS A D, CLEDON M, et al. Behavior and characterization of titanium dioxide and silver nanoparticles in soils[J]. Science of the Total Environment, 2016, 563/564: 933-943.
[4] LEE S H, SALUNKE B K, KIM B S. Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts[J]. Biotechnology and Bioprocess Engineering, 2014, 19 (1): 169-174.
[5] VAN HENGEL I A J, RIOOL M, FRATILA-APACHITEI L E, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus[J]. Biomaterials, 2017, 140: 1-15.
[6] BI Y Q, HAN B, ZIMMERMAN S, et al. Four release tests exhibit variable silver stability from nanoparticle-modified reverse osmosis membranes[J]. Water Research, 2018, 143: 77-86.
[7] KUMAR S, SHUKLA A, BAUL P P, et al. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications[J]. Food Packaging and Shelf Life, 2018, 16: 178-184.
[8] MATSUHISA N, INOUE D, ZALAR P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes[J]. Nature Materials, 2017, 16 (8): 834-840.
[9] HANSCH M, EMMERLING C. Effects of silver nanoparticles on the microbiota and enzyme activity in soil[J]. Journal of Plant Nutrition and Soil Science, 2010, 173 (4): 554-558.
[10] PROSPOSITO P,BURRATTI L, VENDITTI I. Silver nanoparticles as colorimetric sensors for water pollutants [J]. Chemosensors, 2020, 8 (2):26:1-29.
[11] SUN T Y, GOTTSCHALK F, HUNGERBUHLER K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials[J]. Environmental Pollution, 2014, 185: 69-76.
[12] ADAM V, CABALLERO-GUZMAN A, NOWACK B. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis[J]. Environmental Pollution, 2018, 243(A):17-27.
[13] WANG P, MENZIES N W, DENNIS P G, et al. Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability[J]. Environmental Science and Technology, 2016, 50 (15): 8274-8281.
[14] ANJUM N A, GILL S S, DUARTE A C, et al. Silver nanoparticles in soil-plant systems[J]. Journal of Nanoparticle Research, 2013, 15 (9): 1896: 1-26.
[15] DELGADO-BAQUERIZO M,REICH P B, TRIVEDI C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology and Evolution, 2020, 4 (2): 210-220.
[16] 管圣迪, 苏颖轩, 李梦莉, 等. 老化石油污染土壤微生物群落多样性特征[J]. 化学与生物工程, 2023, 40 (2): 37-43.
[17] 徐智, 杨玉明, 江志强, 等. 微塑料对生态环境影响的研究进展[J]. 武汉工程大学学报, 2022, 44 (4): 363-370.
[18] PEIXOTO S, OLIVEIRA J M M, HENRIQUES I, et al. Pollution-induced community tolerance framework-disc diffusion method to assess the impact of silver nanoparticles in soils: potential relevance for risk assessment[J]. Applied Soil Ecology, 2022, 169: 104185: 1-5.
[19] MONTES de OCA-VASQUEZ G, SOLANO-CAMPOS F, VEGA-BAUDRIT J R, et al. Environmentally relevant concentrations of silver nanoparticles diminish soil microbial biomass but do not alter enzyme activities or microbial diversity[J]. Journal of Hazardous Materials, 2020, 391: 122224: 1-10.
[20] SAMARAJEEWA A D, VELICOGNA J R, SCHWERTFEGER D M, et al. Effect of silver nanoparticle contaminated biosolids on the soil microbial community[J]. NanoImpact, 2019, 14: 100157: 1-11.
[21] FOSTER A L, MUNK L, KOSKI R A, et al. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska[J]. Applied Geochemistry, 2008, 23 (2): 279-307.
[22] IBEKWE A M, KENNEDY A C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions[J]. FEMS Microbiology Ecology, 1998, 26: 151-163.
[23] TUNLID A, BAIRD B H, TREXLER M B, et al. Determination of phospholipid ester-linked fatty acids and poly β-hydroxybutyrate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L.)[J]. Canadian Journal of Microbiology, 1985, 31: 1113-1119.
[24] ROSLEV P, IVERSEN N, HENRIKSEN K. Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis[J]. Journal of Microbiological Methods, 1998, 31: 99-111.
[25] 齐鸿雁, 薛凯, 张洪勋. 磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用[J]. 生态学报, 2003, 23 (8): 1576-1582.
[26] PRIESTER J H, GE Y, MIELKE R E, et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption[J]. Proceedings of the National Academy of Sciences (USA), 2012, 109 (37): E2451-E2456.
[27] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37 (8): 911-917.
[28] 吴建军, 蒋艳梅, 吴愉萍, 等. 重金属复合污染对水稻土微生物生物量和群落结构的影响[J]. 土壤学报, 2008, 45 (6): 1102-1108.
[29] GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology,1991,57(8):2351-2359.
[30] XIN X P,ZHAO F L, ZHAO H M, et al. Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties[J]. Geoderma, 2020, 367: 114278: 1-9.
[31] LIU G F, ZHANG M, JIN Y J, et al. The effects of low concentrations of silver nanoparticles on wheat growth, seed quality, and soil microbial communities[J]. Water Air and Soil Pollution, 2017, 228 (9): 348: 1-12.
[32] JACOBSON K H, GUNSOLUS I L, KUECH T R, et al. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes[J]. Environmental Science and Technology, 2015, 49 (17): 10642-10650.
[33] MONTES de OCA-VASQUEZ G, SOLANO-CAMPOS F, VEGA-BAUDRIT J R, et al. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil[J]. Science of the Total Environment, 2020, 744: 140919: 1-11.
[34] KUMAR N, PALMER G R, SHAH V, et al. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages[J]. PLoS One, 2014, 9 (6): e99953: 1-12.
[35] ZOU X Y, LI P H, WANG X D, et al. Silver nanoparticle and Ag+-induced shifts of microbial communities in natural brackish waters: are they more pronounced under oxic conditions than anoxic conditions?[J]. Environmental Pollution, 2020, 258: 113686: 1-29.
[36] KRAAS M, SCHLICH K, KNOPF B, et al. Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora[J]. Environmental Toxicology and Chemistry, 2017, 36 (12): 3305-3313.
[37] VASILEIADIS S, BRUNETTI G, MARZOUK E, et al. Silver toxicity thresholds for multiple soil microbial biomarkers[J]. Environmental Science and Technology, 2018, 52 (15): 8745-8755.
[38] ZHANG H L, HUANG M, ZHANG W H, et al. Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils[J]. Environmental Science and Technology, 2020, 54 (6): 3334-3342.
[39] GUNAWAN C, FAIZ M B, MANN R, et al. Nanosilver targets the bacterial cell envelope: the link with generation of reactive oxygen radicals[J]. ACS Applied Materials and Interfaces, 2020, 12 (5): 5557-5568.

相似文献/References:

[1]王肖已,姚槐应*,李 杏.草地土壤生态系统对氮沉降响应的研究进展[J].武汉工程大学学报,2020,42(03):276.[doi:10.19843/j.cnki.CN42-1779/TQ. 201912015]
 WANG Xiaoyi,YAO Huaiying*,LI Xing.Research Progress in Soil Ecosystem Responses to Nitrogen Deposition in Grasslands[J].Journal of Wuhan Institute of Technology,2020,42(06):276.[doi:10.19843/j.cnki.CN42-1779/TQ. 201912015]

备注/Memo

备注/Memo:
收稿日期:2023-05-04
基金项目:武汉工程大学研究生教育创新基金(CX2021451)
作者简介:宋宇迪,硕士研究生。E-mail:[email protected]
*通讯作者:姚槐应,博士,教授。E-mail:[email protected]
引文格式:宋宇迪,樊昊心,姚槐应. 纳米银胁迫下土壤微生物磷脂脂肪酸的响应特征[J]. 武汉工程大学学报,2023,45(6):655-662.
更新日期/Last Update: 2023-12-25