[2] MCGILLICUDDY E, MURRAY I, KAVANAGH S, et al. Silver nanoparticles in the environment: sources, detection and ecotoxicology[J]. Science of the Total Environment, 2017, 575: 231-246.
[3] PACHAPUR V L, LARIOS A D, CLEDON M, et al. Behavior and characterization of titanium dioxide and silver nanoparticles in soils[J]. Science of the Total Environment, 2016, 563/564: 933-943.
[4] LEE S H, SALUNKE B K, KIM B S. Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts[J]. Biotechnology and Bioprocess Engineering, 2014, 19 (1): 169-174.
[5] VAN HENGEL I A J, RIOOL M, FRATILA-APACHITEI L E, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus[J]. Biomaterials, 2017, 140: 1-15.
[6] BI Y Q, HAN B, ZIMMERMAN S, et al. Four release tests exhibit variable silver stability from nanoparticle-modified reverse osmosis membranes[J]. Water Research, 2018, 143: 77-86.
[7] KUMAR S, SHUKLA A, BAUL P P, et al. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications[J]. Food Packaging and Shelf Life, 2018, 16: 178-184.
[8] MATSUHISA N, INOUE D, ZALAR P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes[J]. Nature Materials, 2017, 16 (8): 834-840.
[9] HANSCH M, EMMERLING C. Effects of silver nanoparticles on the microbiota and enzyme activity in soil[J]. Journal of Plant Nutrition and Soil Science, 2010, 173 (4): 554-558.
[10] PROSPOSITO P,BURRATTI L, VENDITTI I. Silver nanoparticles as colorimetric sensors for water pollutants [J]. Chemosensors, 2020, 8 (2):26:1-29.
[11] SUN T Y, GOTTSCHALK F, HUNGERBUHLER K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials[J]. Environmental Pollution, 2014, 185: 69-76.
[12] ADAM V, CABALLERO-GUZMAN A, NOWACK B. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis[J]. Environmental Pollution, 2018, 243(A):17-27.
[13] WANG P, MENZIES N W, DENNIS P G, et al. Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability[J]. Environmental Science and Technology, 2016, 50 (15): 8274-8281.
[14] ANJUM N A, GILL S S, DUARTE A C, et al. Silver nanoparticles in soil-plant systems[J]. Journal of Nanoparticle Research, 2013, 15 (9): 1896: 1-26.
[15] DELGADO-BAQUERIZO M,REICH P B, TRIVEDI C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology and Evolution, 2020, 4 (2): 210-220.
[16] 管圣迪, 苏颖轩, 李梦莉, 等. 老化石油污染土壤微生物群落多样性特征[J]. 化学与生物工程, 2023, 40 (2): 37-43.
[17] 徐智, 杨玉明, 江志强, 等. 微塑料对生态环境影响的研究进展[J]. 武汉工程大学学报, 2022, 44 (4): 363-370.
[18] PEIXOTO S, OLIVEIRA J M M, HENRIQUES I, et al. Pollution-induced community tolerance framework-disc diffusion method to assess the impact of silver nanoparticles in soils: potential relevance for risk assessment[J]. Applied Soil Ecology, 2022, 169: 104185: 1-5.
[19] MONTES de OCA-VASQUEZ G, SOLANO-CAMPOS F, VEGA-BAUDRIT J R, et al. Environmentally relevant concentrations of silver nanoparticles diminish soil microbial biomass but do not alter enzyme activities or microbial diversity[J]. Journal of Hazardous Materials, 2020, 391: 122224: 1-10.
[20] SAMARAJEEWA A D, VELICOGNA J R, SCHWERTFEGER D M, et al. Effect of silver nanoparticle contaminated biosolids on the soil microbial community[J]. NanoImpact, 2019, 14: 100157: 1-11.
[21] FOSTER A L, MUNK L, KOSKI R A, et al. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska[J]. Applied Geochemistry, 2008, 23 (2): 279-307.
[22] IBEKWE A M, KENNEDY A C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions[J]. FEMS Microbiology Ecology, 1998, 26: 151-163.
[23] TUNLID A, BAIRD B H, TREXLER M B, et al. Determination of phospholipid ester-linked fatty acids and poly β-hydroxybutyrate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L.)[J]. Canadian Journal of Microbiology, 1985, 31: 1113-1119.
[24] ROSLEV P, IVERSEN N, HENRIKSEN K. Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis[J]. Journal of Microbiological Methods, 1998, 31: 99-111.
[25] 齐鸿雁, 薛凯, 张洪勋. 磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用[J]. 生态学报, 2003, 23 (8): 1576-1582.
[26] PRIESTER J H, GE Y, MIELKE R E, et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption[J]. Proceedings of the National Academy of Sciences (USA), 2012, 109 (37): E2451-E2456.
[27] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37 (8): 911-917.
[28] 吴建军, 蒋艳梅, 吴愉萍, 等. 重金属复合污染对水稻土微生物生物量和群落结构的影响[J]. 土壤学报, 2008, 45 (6): 1102-1108.
[29] GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology,1991,57(8):2351-2359.
[30] XIN X P,ZHAO F L, ZHAO H M, et al. Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties[J]. Geoderma, 2020, 367: 114278: 1-9.
[31] LIU G F, ZHANG M, JIN Y J, et al. The effects of low concentrations of silver nanoparticles on wheat growth, seed quality, and soil microbial communities[J]. Water Air and Soil Pollution, 2017, 228 (9): 348: 1-12.
[32] JACOBSON K H, GUNSOLUS I L, KUECH T R, et al. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes[J]. Environmental Science and Technology, 2015, 49 (17): 10642-10650.
[33] MONTES de OCA-VASQUEZ G, SOLANO-CAMPOS F, VEGA-BAUDRIT J R, et al. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil[J]. Science of the Total Environment, 2020, 744: 140919: 1-11.
[34] KUMAR N, PALMER G R, SHAH V, et al. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages[J]. PLoS One, 2014, 9 (6): e99953: 1-12.
[35] ZOU X Y, LI P H, WANG X D, et al. Silver nanoparticle and Ag+-induced shifts of microbial communities in natural brackish waters: are they more pronounced under oxic conditions than anoxic conditions?[J]. Environmental Pollution, 2020, 258: 113686: 1-29.
[36] KRAAS M, SCHLICH K, KNOPF B, et al. Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora[J]. Environmental Toxicology and Chemistry, 2017, 36 (12): 3305-3313.
[37] VASILEIADIS S, BRUNETTI G, MARZOUK E, et al. Silver toxicity thresholds for multiple soil microbial biomarkers[J]. Environmental Science and Technology, 2018, 52 (15): 8745-8755.
[38] ZHANG H L, HUANG M, ZHANG W H, et al. Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils[J]. Environmental Science and Technology, 2020, 54 (6): 3334-3342.
[39] GUNAWAN C, FAIZ M B, MANN R, et al. Nanosilver targets the bacterial cell envelope: the link with generation of reactive oxygen radicals[J]. ACS Applied Materials and Interfaces, 2020, 12 (5): 5557-5568.