[2] 邹义琪,胡朴,窦林涛,等.钠离子电池正极材料Na3.5Mn0.5V1.5(PO4)3的制备和电化学性能[J].武汉工程大学学报,2022,44(4):412-416.
[3] SINGH P,JONSHAGEN B. Zinc-bromine battery for energy storage [J]. Journal of Power Sources,1991,35(4):405-410.
[4] YANG H B,MENG X L,YANG E D,et al. Effect of La addition on the electrochemical properties of secondary zinc electrodes [J]. Journal of the Electrochemical Society,2004,151(3):A389-A393.
[5] NOACK J,ROZNYATOVSKAYA N,HERR T,et al. The chemistry of redox-flow batteries [J]. Angewandte Chemie(International Edition),2015,54(34):9776-9809.
[6] BECK F,RüETSCHI P. Rechargeable batteries with aqueous electrolytes [J]. Electrochimica Acta,2000,45(15/16):2467-2482.
[7] BISWAS S,SENJU A,MOHR R,et al. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage [J]. Energy & Environmental Science,2017,10(1):114-120.
[8] LEX P J,MATTHEWS J F. Recent developments in zinc/bromine battery technology at Johnson Controls [C]//IEEE 35th International Power Sources Symposium. Cherry Hill,NJ,USA:IEEE,1992:88-92.
[9] KE X Y,PRAHL J M,ALEXANDER J I D,et al. Rechargeable redox flow batteries:flow fields,stacks and design considerations [J]. Chemical Society Reviews,2018,47(23):8721-8743.
[10] LAI Q Z,ZHANG H M,LI X F,et al. A novel single flow zinc-bromine battery with improved energy density [J]. Journal of Power Sources,2013,235:1-4.
[11] ZHANG X X,WANG X K,QU G M,et al. Reversible solid-liquid conversion enabled by self-capture effect for stable nonflow zinc-bromine batteries [J/OL]. Green Energy & Environment,(2022-12-08)[2023-02-03]. https://www.sciencedirect.com/science/article/pii/S2468025722001789?via%3Dihub. Doi:10. 1016/ j.gee.2022.11.007.
[12] LEE J H,BYUN Y,JEONG G H,et al. High-energy efficiency membraneless flowless Zn-Br battery:utilizing the electrochemical-chemical growth of polybromides [J]. Advanced Materials,2019,31(52):1904524.
[13] LIU S Y,WU J,HUANG J Q,et al. A high-energy efficiency static membrane-free zinc-bromine battery enabled by a high concentration hybrid electrolyte [J]. Sustainable Energy & Fuels,2022,6(4):1148-1155.
[14] JANOSCHKA T,MARTIN N,HAGER M D,et al. An aqueous redox-flow battery with high capacity and power:the TEMPTMA/MV system [J]. Angewandte Chemie(International Edition),2016,55(46):14427-14430.
[15] HOOBIN P M,CATHRO K J,NIERE J O. Stability of zinc/bromine battery electrolytes [J]. Journal of Applied Electrochemistry,1989,19(6):943-945.
[16] CATHRO K J,CEDZYNSKA K,CONSTABLE D C,et al. Selection of quaternary ammonium bromides for use in zinc/bromine cells [J]. Journal of Power Sources,1986,18(4):349-370.
[17] CEDZYNSKA K. Properties of modified electrolyte for zinc-bromine cells [J]. Electrochimica Acta,1995,40(8):971-976.
[18] GAO L J,LI Z X,ZOU Y P,et al. A high-performance aqueous zinc-bromine static battery [J]. Iscience,2020,23(8):101348.
[19] LI X J,LI T Y,XU P C,et al. A complexing agent to enable a wide-temperature range bromine-based flow battery for stationary energy storage [J]. Advanced Functional Materials,2021,31(22):2100133.
[20] LANCRY E,MAGNES B Z,BEN-DAVID I,et al. New bromine complexing agents for bromide based batteries [J]. ECS Transactions,2013,53(7):107-115.
[21] KIM M, YUN D, JEON J. Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in zinc-bromide flow battery [J]. Journal of Power Sources,2019,438:227020.
[22] LEE Y, YUN D, PARK J, et al. An organic imidazolium derivative additive inducing fast and highly reversible redox reactions in zinc-bromine flow batteries [J]. Journal of Power Sources,2022,547:232007.
[23] 高禄杰. 水系锌溴静态电池及关键材料研究[D].长沙:湖南大学,2020.
[24] LIM H S,LACKNER A M,KNECHTLI R C. Zinc-bromine secondary battery [J]. Journal of the Electrochemical Society,1977,124(8):1154-1157.
[25] EIDLER P. Development of zinc/bromine batteries for load-leveling applications:phase 1 final report [R]. Albuquerque,New Mexico:Sandia National Laboratories,1999.
[26] CLARK N,EIDLER P,LEX P. Development of zinc/bromine batteries for load-leveling applications:phase 2 final report [R]. Sandia National Lab.(SNL-NM),Albuquerque,NM (United States);Sandia National Lab.(SNL-CA),Livermore,CA (United States):Sandia National Laboratories,1999.
[27] KIM D, JEON J. A Zn(ClO4)2 supporting material for highly reversible zinc-bromine electrolytes [J]. Bulletin of the Korean Chemical Society,2016,37(3):299-304.
[28] WU M C, ZHAO T S, JIANG H R, et al. High-performance zinc bromine flow battery via improved design of electrolyte and electrode [J]. Journal of Power Sources,2017,355:62-68.
[29] WU M C,ZHAO T S,WEI L,et al. Improved electrolyte for zinc-bromine flow batteries [J]. Journal of Power Sources,2018,384:232-239.
[30] ADITH R V, PANDIYAN NARESH R,MARIYAPPAN K,et al. An optimistic approach on flow rate and supporting electrolyte for enhancing the performance characteristics of Zn-Br2 redox flow battery [J]. Electrochimica Acta,2021,388:138451.
[31] WANG K L,PEI P C,MA Z, et al. Dendrite growth in the recharging process of zinc-air batteries [J]. Journal of Materials Chemistry A,2015,3(45):22648-22655.
[32] LU W J, XIE C X, ZHANG H M, et al. Inhibition of zinc dendrite growth in zinc-based batteries [J]. ChemSusChem,2018,11(23):3996-4006.
[33] MOSHTEV R V,ZLATILOVA P. Kinetics of growth of zinc dendrite precursors in zincate solutions [J]. Journal of Applied Electrochemistry,1978,8(3):213-222.
[34] ITO Y,NYCE M,PLIVELICH R,et al. Gas evolution in a flow-assisted zinc-nickel oxide battery [J]. Journal of Power Sources,2011,196(15):6583-6587.
[35] DUNDáLEK J, ?NAJDR I, LIBáNSKY O, et al. Zinc electrodeposition from flowing alkaline zincate solutions:role of hydrogen evolution reaction [J]. Journal of Power Sources,2017,372:221-226.
[36] SUN K E K,HOANG T K A,DOAN T N L,et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries [J]. ACS Applied Materials & Interfaces,2017,9(11):9681-9687.
[37] YANG H S,PARK J H,RA H W,et al. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery [J]. Journal of Power Sources,2016,325:446-452.
[38] CHLADIL L,?ECH O,SMEJKAL J,et al. Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries [J]. Journal of Energy Storage,2019,21:295-300.
[39] GUO L B,GUO H, HUANG H L, et al. Inhibition of zinc dendrites in zinc-based flow batteries [J]. Frontiers in Chemistry,2020,8:557.
[40] LEE C W, SATHIYANARAYANAN K, EOM S W,et al. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives [J]. Journal of Power Sources,2006,159(2):1474-1477.
[41] BANIK S J,AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive [J]. Journal of the Electrochemical Society,2013,160(11):D519-D523.
[42] 冯天明. 锌溴液流电池电解液性能的探究[D].杭州:浙江工业大学,2018.
[43] WEN Y H,WANG T,CHENG J,et al. Lead ion and tetrabutylammonium bromide as inhibitors of the growth of spongy zinc in single flow zinc/nickel batteries [J]. Electrochimica Acta,2012,59:64-68.
[44] WANG J M, ZHANG L, ZHANG C,et al. Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions [J]. Journal of Power Sources,2001,102(1/2):139-143.
[45] MUNAIAH Y, DHEENADAYALAN S,RAGUPATHY P,et al. High-performance carbon nanotube-based electrodes for zinc bromine redox flow batteries [J]. ECS Journal of Solid-State Science and Technology,2013,2(10):M3182-M3186.
[46] AYMé-PERROT D, WALTER S, GABELICA Z,et al. Evaluation of carbon cryogels used as cathodes for non-flowing zinc-bromine storage cells [J]. Journal of Power Sources,2008,175(1):644-650.
[47] MUNAIAH Y,SURESH S,DHEENADAYALAN S,et al. Comparative electrocatalytic performance of single-walled and multiwalled carbon nanotubes for zinc bromine redox flow batteries [J]. The Journal of Physical Chemistry C,2014,118(27):14795-14804.
[48] WU M C, ZHAO T S, ZHANG R H, et al. A zinc-bromine flow battery with improved design of cell structure and electrodes [J]. Energy Technology,2018,6(2):333-339.
[49] ARCHANA K S,PANDIYAN NARESH R,ENALE H,et al. Effect of positive electrode modification on the performance of zinc-bromine redox flow batteries [J]. Journal of Energy Storage,2020,29:101462.
[50] XIANG H X,TAN A D,PIAO J H,et al. Efficient nitrogen-doped carbon for zinc-bromine flow battery [J]. Small,2019,15(24):1901848.
[51] LU W J,XU P C,SHAO S Y,et al. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc-bromine flow battery with ultrahigh power density [J]. Advanced Functional Materials,2021,31(30):2102913.
[52] WU W L,XU S C,LIN Z R,et al. A polybromide confiner with selective bromide conduction for high performance aqueous zinc-bromine batteries [J]. Energy Storage Materials,2022,49:11-18.
[53] YIN Y B,YUAN Z Z,LI X F. Rechargeable aqueous zinc-bromine battery:an overview and future perspective [J]. Physical Chemistry Chemical Physics,2021,23(46):26070-26084.
[54] LEE J N,DO E,KIM Y,et al. Development of titanium 3D mesh interlayer for enhancing the electrochemical performance of zinc-bromine flow battery [J]. Scientific Reports,2021,11:4508.
[55] ZHANG Y,WEI C L,WU M X,et al. A high-performance COF-based aqueous zinc-bromine battery [J]. Chemical Engineering Journal,2023,451:138915.
[56] LI G,JIA Y B,ZHANG S,et al. The crossover behavior of bromine species in the metal-free flow battery [J]. Journal of Applied Electrochemistry,2017,47(2):261-272.
[57] YUAN Z Z,YIN Y B,XIE C X,et al. Advanced materials for zinc-based flow battery:development and challenge [J]. Advanced Materials,2019,31(50):1902025.
[58] LI M Q,SU H,QIU Q G,et al. A quaternized polysulfone membrane for zinc-bromine redox flow battery [J]. Journal of Chemistry,2014:321629.
[59] ZHANG L Q,ZHANG H M,LAI Q Z,et al. Development of carbon coated membrane for zinc/bromine flow battery with high power density [J]. Journal of Power Sources,2013,227:41-47.
[60] KIM R,KIM H G,DOO G,et al. Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries [J]. Scientific Reports,2017,7:10503.
[61] KIM R,YUK S,LEE J H,et al. Scaling the water cluster size of Nafion membranes for a high-performance Zn/Br redox flow battery [J]. Journal of Membrane Science,2018,564:852-858.
[62] YUAN X H,MO J,HUANG J,et al. An aqueous hybrid zinc-bromine battery with high voltage and energy density [J]. ChemElectroChem,2020,7(7):1531-1536.
[63] NARESH R P,RAGUPATHY P,ULAGANATHAN M. Carbon nanotube scaffolds entrapped in a gel matrix for realizing the improved cycle life of zinc bromine redox flow batteries [J]. ACS Applied Materials & Interfaces,2021,13(40):48110-48118.
[64] HUA L,LU W,LI T,et al. A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery [J]. Materials Today Energy,2021,21:100763.
[65] HAN D B, GIKUNOO E K, SHANMUGAM S. A zwitterionic composite membrane for a high-performance zinc/bromine flowless battery [J]. Journal of Materials Chemistry A,2022,10(36):18598-18601.
[66] HAN D B, SHANMUGAM S. Active material crossover suppression with bi-ionic transportability by an amphoteric membrane for zinc-bromine redox flow battery [J]. Journal of Power Sources,2022,540:231637.