|本期目录/Table of Contents|

[1]曾 洋,李 欣,吴 考*,等.多糖基可降解膜的疏水性质强化研究进展[J].武汉工程大学学报,2024,46(01):55-60.[doi:10.19843/j.cnki.CN42-1779/TQ.202106013]
 ZENG Yang,LI Xin,WU Kao*,et al.Research progress in enhancing hydrophobicity ofpolysaccharide-based degradable film[J].Journal of Wuhan Institute of Technology,2024,46(01):55-60.[doi:10.19843/j.cnki.CN42-1779/TQ.202106013]
点击复制

多糖基可降解膜的疏水性质强化研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年01期
页码:
55-60
栏目:
生物与环境工程
出版日期:
2024-03-12

文章信息/Info

Title:
Research progress in enhancing hydrophobicity of
polysaccharide-based degradable film
文章编号:
1674 - 2869(2024)01 - 0055 - 06
作者:
曾 洋李 欣吴 考*肖 满姜发堂
湖北工业大学生物工程与食品学院,湖北 武汉 430068
Author(s):
ZENG Yang LI Xin WU Kao* XIAO Man JIANG Fatang
School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
关键词:
多糖 可降解 复合膜 疏水强化
Keywords:
polysaccharide degradable composite film hydrophobicity enhancement
分类号:
TB484.9
DOI:
10.19843/j.cnki.CN42-1779/TQ.202106013
文献标志码:
A
摘要:
多糖基可降解膜因具备无毒、环境友好、力学强度较好等特点,是替换传统石油基塑料膜的潜在选择。但大多数多糖的亲水性较强,使其形成的薄膜耐水性较弱,不利于实际应用。展示了近年来多糖基可降解复合膜疏水性质强化的研究进展。基于多糖化学改性方法,介绍了常见多糖膜的疏水改性效果,包括改性淀粉膜、改性魔芋葡甘聚糖膜和改性壳聚糖膜;从物理共混的角度总结了多糖与其他天然成分复合成膜的疏水增强机理;从多层复合的角度说明了层层自组装、静电纺丝等离子体等技术对多糖基复合膜疏水效果的提升效果。建议今后从改性膜的分子组装结构及其组装过程等方面阐明改性膜的疏水结构形成机理,为其稳定生产提供理论指导。同时,探究结合多种成膜技术同步强化多糖基可降解膜的疏水和力学性能的可行性,提升多糖基可降解膜在包装上的应用效果与体验。

Abstract:
Polysaccharide-based degradable packaging films are potential choices to replace traditional petroleum-based plastic film due to the characteristics of non-toxicity, environmental friendliness, and good mechanical strength. However, the hydrophilicity of most polysaccharides is strong, leading to weak water resistance property of films of them, hindering practical application. In this paper, the recent research progress in the enhancement of hydrophobic properties of polysaccharide-based degradable composite films was presented. According to chemically-modified methods of polysaccharides, the hydrophobic modification effect on typical chemically modified polysaccharide films was introduced, including modified-starch film, modified-konjac glucomannan film, and modified-chitosan film; from the viewpoint of physical blending, the mechanism of hydrophobic enhancement of composite film formed by polysaccharide and other natural components was summarized; from the perspective of multilayer composite, the effect of layer-by-layer self-assembly and electrospinning,and plasma technology on the hydrophobic effect of the polysaccharide-based composite film was explained. It is necessary to elucidate the formation mechanism of the hydrophobic structure of the modified film from the aspects of molecular assembly structure and assembly process of the modified film in the future, to provide theoretical guidance for stable production of the films. Also, the feasibility of simultaneously enhancing the hydrophobicity and mechanical properties of the polysaccharide-based degradable films by combining various film-producing technologies should be explored, which would improve the application effect and consumption experience of polysaccharide-based degradable film in packaging.

参考文献/References:

[1] GROH K J, BACKHAUS T, CARNEY A B, et al. Overview of known plastic packaging-associated chemicals and their hazards[J]. Science of The Total Environment, 2019, 651: 3253-3268.

[2] 陈凯. 食品包装材料对食品安全的影响[J]. 食品安全导刊, 2020(3): 29-29.
[3] RODRIGUE M O, ABRANTES N, GONCALVES F J M, et al. Impacts of plastic products used in daily life on the environment and human health: what is known?[J]. Environmental Toxicology and Pharmacology, 2019, 72: 103239.
[4] COLIVET J, CARVALHO R A. Hydrophilicity and physicochemical properties of chemically modified cassava starch films[J]. Industrial Crops and Products, 2017, 95: 599-607.
[5] XIAO M, DAI S H, WANG L, et al. Carboxymethyl modification of konjac glucomannan affects water binding properties[J]. Carbohydrate Polymers, 2015, 130: 1-8.
[6] QIAO D L,LI S,YU L, et al. Effect of alkanol surface grafting on the hydrophobicity of starch-based films[J]. International Journal of Biological Macromolecules, 2018, 112: 761-766.
[7] LIU Q, GAO L, QIN Y, et al. Incorporation of oxidized debranched starch/chitosan nanoparticles for enhanced hydrophobicity of corn starch films[J]. Food Packaging and Shelf Life, 2023, 35: 101032.
[8] QIAO D L, LU J Y, SHI W J, et al. Deacetylation enhances the properties of konjac glucomannan/agar composites[J]. Carbohydrate Polymers, 2021, 276: 118776.
[9] LIU W Y, LING Z, HUANG C X, et al. Investigation of galactomannan/deacetylated chitosan nanocomposite films and their anti-bacterial capabilities[J]. Materials Today Communications, 2022, 30: 103002.
[10] WANG X, HUANG L X, ZHANG C H, et al. Research advances in chemical modifications of starch for hydrophobicity and its applications: a review[J]. Carbohydrate Polymers,2020,240: 116292.
[11] 刘志军, 郭婷婷. 醋酸酯淀粉/PVA共混膜性能研究[J]. 安徽化工, 2021, 47(6): 86-89.
[12] TAI N L, ADHIKARI R, SHANKS R, et al. Flexible starch-polyurethane films: physiochemical characteristics and hydrophobicity[J]. Carbohydrate Polymers, 2017, 163: 236-246.
[13] 王恒, 肖满, 吴考, 等. 甘油对中试魔芋葡甘聚糖流延膜性能的影响[J]. 包装工程,2017,38(7):59-63.
[14] DU X Z, LI J, CHEN J, et al. Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan[J]. Food Research International, 2012, 46: 270-278.
[15] CHEN X N, LAN W Q, XIE J. Characterization of active films based on chitosan/polyvinyl alcohol integrated with ginger essential oil-loaded bacterial cellulose and application in sea bass (lateolabrax japonicas) packaging[J]. Food Chemistry, 2024, 441: 138343.
[16] WANG W J, XUE C H, MAO X Z. Chitosan: structural modification, biological activity and application[J]. International Journal of Biological Macromolecules, 2020, 164: 4532-4546.
[17] YEAMSUKSAWAT T, LIANG J. Characterization and release kinetic of crosslinked chitosan film incorporated with α-tocopherol[J]. Food Packaging and Shelf Life, 2019, 22: 100415.
[18] DAVIDOVICH P M. Oil structuring using polysaccharides[J]. Current Opinion in Food Science, 2019, 27: 29-35.
[19] VATANPOUR V, YAVUZTURK G B, ZEYTUNCU B, et al. Polysaccharides in fabrication of membranes: a review[J]. Carbohydrate Polymers, 2022, 281: 119041.
[20] WU K, WAN Y, LI X, et al. Impact of heating and drying temperatures on the properties of konjac glucomannan/curdlan blend films[J]. International Journal of Biological Macromolecules, 2021, 167: 1544-1551.
[21] XIAO M, JIANG M F, WU K, et al. Investigation on curdlan dissociation by heating in water[J]. Food Hydrocolloids, 2017, 70: 57-64.
[22] WU K, YAN X, ZHU D D, et al. Formation and characterization of konjac glucomannan/ethyl cellulose films by using ethanol and water as the solvents[J]. International Journal of Biological Macro-molecules, 2023, 241: 124629.
[23] WU K, ZHU Q, QIAN H, et al. Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films[J]. Food Hydrocolloids, 2018, 79: 301-309.
[24] LI X, SHA X M, YANG H S, et al. Ultrasonic treatment regulates the properties of gelatin emulsion to obtain high-quality gelatin film[J]. Food Chemistry: X, 2023, 18: 100673.
[25] YU H Y, GE Y Q, DING H Q, et al. Vanillin cross-linked chitosan/gelatin bio-polymer film with antioxidant, water resistance and ultraviolet-proof properties[J]. International Journal of Biological Macromolecules, 2023, 253: 126726.
[26] 鄢煦, 陶宇轩, 叶子健, 等. 魔芋葡甘聚糖/乙基纤维素/玉米醇溶蛋白复合膜的制备与性能表征[J]. 食品工业科技, 2023, 44(2): 285-292.
[27] LI C, WU K, SU Y H, et al. Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films[J]. International Journal of Biological Macro-molecules, 2019, 138: 135-143.
[28] NI X W, WANG K, WU K, et al. Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems[J]. Carbohydrate Polymers, 2018, 188: 260-267.
[29] WANG K, WU K, XIAO M, et al. Structural characterization and properties of konjac glucomannan and zein blend films[J]. International Journal of Biological Macromolecules, 2017, 105: 1096-1104.
[30] DU Y Y, ZHANG S K, SHENG L J, et al. Food packaging films based on ionically crosslinked konjac glucomannan incorporating zein-pectin nanoparticle-stabilized corn germ oil-oregano oil Pickering emulsion[J]. Food Chemistry, 2023, 429: 136874.
[31] ZHOU X, ZONG X X, WANG S L, et al. Emulsified blend film based on konjac glucomannan/carrageenan/ camellia oil: physical, structural, and water barrier properties[J]. Carbohydrate Polymers, 2021, 251: 117100.
[32] SHI S, XU X W, REN Y M, et al. Beeswax coating improves the hydrophobicity of sodium alginate/ anthocyanin/ cellulose nanocrystal indicator film[J]. Food Hydrocolloids, 2023, 144: 108930.
[33] BETANCUR-D AMBROSIO M C, PEREZ C C E, BARRERA-Maktinez C, et al. Antimicrobial activity, mechanical and thermal properties of cassava starch films incorporated with beeswax and propolis[J]. Journal of Food Science and Technology, 2023:05828-x.
[34] LUCHESI B R, MOREIRA F K V, MARCONCINI J M. Scalable production of hydrophobic starch/beeswax films by continuous solution casting[J]. Journal of Applied Polymer Science, 2023, 141(1): 54730.
[35] 董增, 宋也好, 余明, 等. 纳米SiO2/壳聚糖/淀粉复合包装膜的制备及性能[J]. 塑料工业, 2017, 45(9): 135-139.
[36] PANG B, LIU H, ZHANG K. Recent progress on pickering emulsions stabilized by polysaccharides-based micro/nanoparticles[J]. Advances in Colloid and Interface Science, 2021, 296: 102522.
[37] 李秋莹, 徐瑾秀, 高明君, 等. 普鲁兰/壳聚糖/海藻酸钠双层膜的制备及表征[J]. 包装工程, 2020, 41(15): 96-102.
[38] CHERPINSKI A, TORRES G S, VARTIAINEN J, et al. Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique[J]. Cellulose, 2018, 25(2): 1291-1307.
[39] YAO M Z, LIU Y, QIN C N, et al. Facile fabrication of hydrophobic cellulose-based organic/inorganic nanomaterial modified with POSS by plasma treatment[J]. Carbohydrate Polymers, 2021, 253: 117193.
[40] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况[J]. 材料导报, 2017, 31(5): 40-45.
[41] MISHRA R K, MISHRA P, VERMA K, et al. Electrospinning production of nanofibrous membranes[J]. Environmental Chemistry Letters, 2018, 17(2): 767-800.
[42] FUNARI R, BHALLA N, CHU K Y, et al. Nanoplasmonics for real-time and label-free monitoring of microbial biofilm formation[J]. ACS Sensors, 2018, 3(8): 1499-1509.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-06-17
基金项目:国家自然科学基金(31901655、31972156)
作者简介:曾 洋,硕士研究生。Email: [email protected]
*通信作者:吴 考,博士,教授。Email: [email protected]
引文格式:曾洋,李欣,吴考,等. 多糖基可降解膜的疏水性质强化研究进展[J]. 武汉工程大学学报,2024,46(1):55-60.
更新日期/Last Update: 2024-03-01