|本期目录/Table of Contents|

[1]胡 畔,肖 约,汪 芳,等.基于AdaBoost算法的混凝土抗压强度预测[J].武汉工程大学学报,2024,46(01):111-118.[doi:10.19843/j.cnki.CN42-1779/TQ.202210021]
 HU Pan,XIAO Yue,WANG Fang,et al.Prediction of concrete compressive strength based on AdaBoost algorithm[J].Journal of Wuhan Institute of Technology,2024,46(01):111-118.[doi:10.19843/j.cnki.CN42-1779/TQ.202210021]
点击复制

基于AdaBoost算法的混凝土抗压强度预测(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年01期
页码:
111-118
栏目:
资源与土木工程
出版日期:
2024-03-12

文章信息/Info

Title:
Prediction of concrete compressive strength based on AdaBoost algorithm
文章编号:
1674 - 2869(2024)01 - 0111 - 08
作者:
胡 畔1肖 约2汪 芳3唐文泽4周 华4
1. 武汉理工大学土木工程学院,湖北 武汉 430070;
2. 华杰工程咨询有限公司中南分公司,湖北 武汉 430000;
3. 武汉华夏理工学院建筑与土木工程学院,湖北 武汉 430223;
4. 武汉安宇工程建设管理有限公司,湖北 武汉 430040
Author(s):
HU Pan1 XIAO Yue2WANG Fang3TANG Wenze4 ZHOU Hua4
1. College of Civil Engineering,Wuhan University of Technology,Wuhan 430070,China;
2. Huajie Engineering Consulting Co.,Ltd Zhongnan Branch,Wuhan 430000,China;
3. College of Architecture and Civil Engineering,Wuhan Huaxia University of Technology,Wuhan 430223,China;
4. Wuhan Anyu Engineering Construction Management Co.,Ltd,Wuhan 430040,China
关键词:
混凝土抗压强度机器学习交叉验证训练数据集弱学习器
Keywords:
concrete compressive strength machine learning cross-validation training data set weak learner
分类号:
TU528
DOI:
10.19843/j.cnki.CN42-1779/TQ.202210021
文献标志码:
A
摘要:
论文采集1 030组混凝土抗压强度试验数据,通过训练AdaBoost算法,得到可用于预测混凝土抗压强度值的模型。结果表明:AdaBoost算法模型可以在给定输入变量的情况下准确有效地预测混凝土抗压强度;10折交叉验证决定系数R2的平均值达到0.952,平均绝对百分比误差(MAPE)达到11.39%,说明十折交叉验证具有较高准确率;AdaBoost算法与人工神经网络和支持向量机独立学习算法比较,表现出集成学习算法的优越性;讨论了AdaBoost算法模型中训练数据集数量、弱学习器类型和输入变量的数量相关因素,发现使用1 030数据集的80%可以获得良好的预测结果。

Abstract:
????We collect 1 030 groups of concrete compressive strength test data, and obtain a model that can be used to predict the values of concrete compressive strength by training the AdaBoost algorithm. The results show that the AdaBoost algorithm model can accurately and effectively predict the concrete compressive strength under the condition of given input variables;the average values of coefficients of determination using a 10-fold cross-validation reach 0.952,and the mean absolute percentage errors reach 11.39%,indicating that the prediction errors are very low;compared with the independent learning algorithms of artificial neural network and support vector machine, the AdaBoost algorithm shows the superiority of ensemble learning algorithms. The number of training data sets and the type of weak learners in the AdaBoost algorithm model were discussed. According to the number of input variables,it is found that using 80% of the 1 030 sets of data gives good prediction results.

参考文献/References:

[1] HENIGAL A,ELBELTGAI E,ELDWINY M,et al. Artificial neural network model for forecasting concrete compressive strength and slump in Egypt [J]. Journal of Al-Azhar University Engineering Sector,2016,11(39):435-446.

[2] PHAM A D,HOANG N D,NGUYEN Q T. Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression [J]. Journal of Computing in Civil Engineering,2016,30(3):06015002.
[3] BUI D K,NGUYEN T,CHOU J S,et al. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete [J]. Construction and Building Matererials,2018,180:320-333.
[4] TIEN BUI D,ABDULLAHI M M,GHAREH S,et al. Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete [J]. Engineering with Computers,2021,37(1):701-712.
[5] DUAN J,ASTERIS P G,NGUYEN H,et al. A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model [J]. Engineering with Computers,2021,37(4):3329-3346.
[6] 付港,李鸣. 最小二乘支持向量机的自适应数字水印算法[J].武汉工程大学学报,2015,37(6):67-72.
[7] YEH I C. Modeling of strength of high-performance concrete using artificial neural networks [J]. Cement and Concrete Research,1998,28(12):1797-1808.
[8] FREUND Y,SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences,1997,55(1):119-139.
[9] 游文霞,赵迪,吴永华,等. 基于AdaBoost集成学习的台区负荷最大值预测研究[J].三峡大学学报(自然科学版),2020,42(6):92-96.
[10] 李杨,刘庆华,郭天添. 基于CART-SVR模型的混凝土抗压强度预测研究[J].混凝土,2022(8):40-44.
[11] 朱昶胜,田慧星,冯文芳. 基于AdaBoost算法结合DEGWO-SVM的财务困境预测[J].兰州理工大学学报,2021,47(6):100-107.
[12] 余海玲,郑建岚. 基于Python人工神经网络的再生混凝土碳化深度预测[J].混凝土,2020(9):52-55.
[13] 湖北交投十巫高速公路有限公司. 基于随机森林和智能算法预测混凝土抗压强度的方法:CN 202010787302.3[P].2020-12-11[2022-09-27].
[14] 陈世聪. 基于高维回归模型的自适应交叉验证法研究[D].深圳:深圳大学,2020.
[15] 吴贤国,刘鹏程,陈虹宇,等. 基于随机森林的高性能混凝土抗压强度预测[J].混凝土,2022(1):17-20,24.

相似文献/References:

[1]陈国灿.低碳超高强石渣混凝土的抗火性能研究[J].武汉工程大学学报,2010,(11):36.[doi:10.3969/j.issn.16742869.2010.11.010]
 CHEN Guo can.Experimental studies on the fire behavior of green super highstrength concrete used stonechip at elevated temperature[J].Journal of Wuhan Institute of Technology,2010,(01):36.[doi:10.3969/j.issn.16742869.2010.11.010]
[2]季家友,祝云,徐慢*,等.磷石膏保温砂浆的制备[J].武汉工程大学学报,2014,(04):39.[doi:103969/jissn16742869201404009]
 JI Jia you,ZHU Yun,XU Man,et al.Preparation and characterization of phosphogypsum thermal insulation mortar[J].Journal of Wuhan Institute of Technology,2014,(01):39.[doi:103969/jissn16742869201404009]
[3]付雅琴,肖莲珍*,史文冲.水泥-粉煤灰复合胶凝体系的早期水化性能[J].武汉工程大学学报,2016,38(2):146.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 009]
 FU Yaqin,XIAO Lianzhen*,SHI Wenchong.Early Hydration Properties of Cement-Fly Ash Cementitious System[J].Journal of Wuhan Institute of Technology,2016,38(01):146.[doi:10. 3969/j. issn. 1674-2869. 2016. 02. 009]
[4]危 钰,黄志良*,李紫谦,等.页岩掺入白水泥中制备文化石的工艺研究[J].武汉工程大学学报,2016,38(3):255.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 010]
 WEI Yu,HUANG Zhiliang*,LI Ziqian,et al.Preparation Technology of Culture Stones by Adding Shale into White Cement[J].Journal of Wuhan Institute of Technology,2016,38(01):255.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 010]
[5]谢岁岁,饶 曦,张 芳,等.增强型地质聚合物的制备[J].武汉工程大学学报,2016,38(05):458.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 009]
 XIE Suisui,RAO Xi,ZHANG Fang,et al.Preparation of Reinforced Geopolymer[J].Journal of Wuhan Institute of Technology,2016,38(01):458.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 009]
[6]邓 召,杨昌炎 *,余 洋,等.高强石膏的制备工艺研究[J].武汉工程大学学报,2017,39(05):415.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 002]
 DENG Zhao,YANG Changyan *,YU Yang,et al.Preparation Technology of High Strength Gypsum[J].Journal of Wuhan Institute of Technology,2017,39(01):415.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 002]
[7]饶 曦,吴艳光,杜飞鹏*.碳纳米管/地质聚合物复合材料的制备及性能研究[J].武汉工程大学学报,2018,40(04):415.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 013]
 RAO Xi,WU Yanguang,DU Feipeng*.Preparation and Properties of Carbon Nanotubes/Geopolymer Composites[J].Journal of Wuhan Institute of Technology,2018,40(01):415.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 013]
[8]蒋兴教,肖莲珍*.不同骨料级配透水混凝土的性能研究及其孔隙识别[J].武汉工程大学学报,2020,42(01):54.[doi:10.19843/j.cnki.CN42-1779/TQ.201904024]
 JIANG Xingjiao,XIAO Lianzhen*.Properties of Pervious Concrete with Different Aggregate Gradations and Its Pore Identification[J].Journal of Wuhan Institute of Technology,2020,42(01):54.[doi:10.19843/j.cnki.CN42-1779/TQ.201904024]
[9]鲁博文,羿庄城,吴艳光*,等.几种填料对偏高岭土-粉煤灰基地质聚合物的增强改性[J].武汉工程大学学报,2020,42(03):293.[doi:10.19843/j.cnki.CN42-1779/TQ.201909013]
 LU Bowen,YI Zhuangcheng,WU Yanguang*,et al.Reinforcement and Modification of Metakaolin-Fly Ash Based Geopolymer with Several Fillers[J].Journal of Wuhan Institute of Technology,2020,42(01):293.[doi:10.19843/j.cnki.CN42-1779/TQ.201909013]
[10]戈 炫,屠艳平*,洪 泽,等.纳米SiO2对橡胶再生混凝土抗压和劈裂抗拉强度的影响[J].武汉工程大学学报,2021,43(06):653.[doi:10.19843/j.cnki.CN42-1779/TQ.202105030]
 GE Xuan,TU Yanping*,HONG Ze,et al.Effect of Nano-SiO2 on Compressive Strength and Splitting Tensile Strength of Rubber-Recycled Concrete[J].Journal of Wuhan Institute of Technology,2021,43(01):653.[doi:10.19843/j.cnki.CN42-1779/TQ.202105030]

备注/Memo

备注/Memo:
收稿日期:2022-10-19
基金项目:水利部重点实验室基金(CX2021Z02)
*通信作者:胡 畔,博士,工程师。Email:[email protected]
引文格式:胡畔,肖约,汪芳,等. 基于AdaBoost算法的混凝土抗压强度预测[J]. 武汉工程大学学报,2024,46(1):111-118.
更新日期/Last Update: 2024-03-01