|本期目录/Table of Contents|

[1]高 原,雷诗涵,陈珂怡,等.植物中金属纳米粒子的转运与转化机制研究进展[J].武汉工程大学学报,2024,46(02):167-174.[doi:10.19843/j.cnki.CN42-1779/TQ.202401012]
 GAO Yuan,LEI Shihan,CHEN Keyi,et al.Advances in the study of transport and transformation mechanism ofmetal nanoparticles in plants[J].Journal of Wuhan Institute of Technology,2024,46(02):167-174.[doi:10.19843/j.cnki.CN42-1779/TQ.202401012]
点击复制

植物中金属纳米粒子的转运与转化机制研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年02期
页码:
167-174
栏目:
生物与环境工程
出版日期:
2024-04-28

文章信息/Info

Title:
Advances in the study of transport and transformation mechanism of
metal nanoparticles in plants
文章编号:
1674 - 2869(2024)02 - 0167 - 08
作者:
高 原雷诗涵陈珂怡金智慧袁 鸣*
绿色化工过程教育部重点实验室,武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
GAO Yuan LEI Shihan CHEN Keyi JIN Zhihui YUAN Ming*
Key Laboratory of Green Chemical Engineering Process of Ministry of Education,School of Environmental Ecology and
Biological Engineering,Wuhan 430205,China
关键词:
金属纳米粒子木质部韧皮部转运转化
Keywords:
metal nanoparticles xylem phloem transport transformation
分类号:
X53
DOI:
10.19843/j.cnki.CN42-1779/TQ.202401012
文献标志码:
A
摘要:
金属纳米粒子(MNPs)的广泛使用对生态环境造成了较大的风险并引起了广泛的关注;虽然已有关于对植物毒害以及植物对其吸收的相关研究,但是MNPs在植物体内转运和转化的机制仍未得到系统的阐明。系统地阐述了MNPs在高等植物木质部、韧皮部中的转运机制,以及其在植物体内的溶解转化和化学转化机制,同时探讨了影响MNPs在植物体内转运转化的影响因素。结果表明:(1)MNPs首先吸附在植物的根部或叶部,再通过质外体或共质体途经向植物内部转移;(2)植物对MNPs的转化机制主要包括溶解转化、化学转化和生物转化(酶降解、蛋白质功能化等);(3)复杂的理化和生物因素(如粒子的种类大小、表面电荷、植物种类等)能够影响植物对MNPs转运及其形态转化。以期为金属纳米粒子污染土壤的生态环境治理和人类健康风险评估提供参考依据。

Abstract:
The extensive use of metal nanoparticles (MNPs) has posed significant risks to the ecological environment and has raised widespread concerns. Although there have been studies on the toxicity of metal nanoparticles to plants and their absorption by plants, the transport and transformation mechanisms of MNPs in plants have not been systematically clarified. The transport mechanisms of MNPs in the xylem and phloem of higher plants are systematically described, as well as their dissolution and chemical transformation mechanisms within plant tissues. Also, the factors influencing the transport and transformation of MNPs in plants are discussed. The findings indicate that: (1) MNPs initially adsorb onto the roots or leaves of plants and then transfer internally through apoplastic or symplastic pathways; (2) Plant transformation mechanisms for MNPs primarily include dissolution, chemical conversion, and biological conversion (enzyme degradation, protein functionalization, etc.); (3) Complex environmental factors such as particle type, size, surface charge, plant species, etc., can affect the transport and morphological transformation of MNPs in plants. This review aims to provide a reference for the ecological management of soil contaminated with MNPs and the assessment of their risks to human health.

参考文献/References:

[1] SEKOU K D, PATEL H. A review on the interaction between nanoparticles and toxic metals in soil: meta-analysis of their effects on soil, plants and human health [J]. Soil & Sediment Contamination, 2023, 32(4): 417-447.

[2] BUNDSCHUH M, FILSER J, LUDERWALD S, et al. Nanoparticles in the environment: where do we come from, where do we go to? [J]. Environmental Sciences Europe, 2018, 30(6): 2-17.
[3] 齐明阳, 王秀峰, 冯文博, 等. 不同纳米材料在纳米肥料上的应用研究进展 [J]. 肥料与健康, 2023, 50(2): 1-5.
[4] 李晶,郭亮,崔海信,等. 纳米农药在植物中的吸收转运研究进展 [J]. 植物学报, 2020, 55(4): 513-528.
[5] 杨新萍, 赵方杰. 植物对纳米颗粒的吸收、转运及毒性效应 [J]. 环境科学, 2013, 34(11): 4495-4502.
[6] LOUGH T J, LUCAS W J. Integrative plant biology: role of phloem long-distance macromolecular trafficking [J]. Annual Review of Plant Biology, 2006, 57: 203-232.
[7] DIETZ K J, HERTH S. Plant nanotoxicology [J]. Trends in Plant Science, 2012, 17(3): 180-187.
[8] ROPPOLO D, DE RYBEL B, TENDON V D, et al. A novel protein family mediates Casparian strip formation in the endodermis [J]. Nature, 2011, 473(7347): 380-383.
[9] SCHYMURA S, FRICKE T, HILDEBRAND H, et al. Elucidating the role of dissolution in CeO2 nanoparticle plant uptake by smart radiolabeling [J]. Angewandte Chemie International Edition, 2017, 56(26): 7411-7414.
[10] Lü J, ZHANG S, LUO L, et al. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize [J]. Environmental Science: Nano, 2015, 2(1): 68-77.
[11] LUU D T, MAUREL C. Aquaporins in a challenging environment: molecular gears for adjusting plant water status [J]. Plant, Cell Environment, 2005, 28(1): 85-96.
[12] 周思雨, 唐文慧, 赵大球, 等. 芍药水通道蛋白基因PIP2-2片段的克隆与表达分析 [J]. 分子植物育种, 2017, 15(3): 800-804.
[13] WONG M H, MISRA R, GIRALDO J P, et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism [J]. Nano Letters, 2016, 16(2): 1161-1172.
[14] ONELLI E, PRESCIANOTTO-BASCHONG C, CACCIANIGA M, et al. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold [J]. Journal of Experimental Botany, 2008, 59(11): 3051-3068.
[15] ZAMBRYSKI P, CRAWFORD K. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants [J]. Annual Review of Cell Developmental Biology, 2000, 16(1): 393-421.
[16] LUCAS W J. Plasmodesmata: intercellular channels for macromolecular transport in plants [J]. Current Opinion in Cell Biology, 1995, 7(5): 673-680.
[17] GEISLER-LEE J, WANG Q, YAO Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana [J]. Nanotoxicology, 2013, 7(3): 323-337.
[18] ZHAI G, WALTERS K S, PEATE D W, et al. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar [J]. Environmental Science & Technology Letters, 2014, 1(2): 146-151.
[19] WANG W N, TARAFDAR J C, BISWAS P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake [J]. Journal of Nanoparticle Research, 2013, 15: 1-13.
[20] HONG J, PERALTA-VIDEA J R, RICO C, et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants [J]. Environmental Science & Technology, 2014, 48(8): 4376-4385.
[21] CHEN H. Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants [J]. Chemical Speciation & Bioavailability, 2018, 30(1): 123-134.
[22] SESHADRI B, BOLAN N S, NAIDU R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation [J]. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 524-548.
[23] RICO C M, JOHNSON M G, MARCUS M A. Cerium oxide nanoparticles transformation at the root-soil interface of barley (Hordeum vulgare L.) [J]. Environmental Science-Nano,2018,5(8):1807-1812.
[24] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470-480.
[25] LIN D H, XING B S. Root uptake and phytotoxicity of ZnO nanoparticles [J]. Environmental Science & Technology, 2008, 42(15): 5580-5585.
[26] ZHANG P,MA Y,ZHANG Z,et al. Biotransforma-tion of ceria nanoparticles in cucumber plants [J]. ACS Nano, 2012, 6(11): 9943-9950.
[27] ERIKSSON P, TAL A A, SKALLBERG A, et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement [J]. Scientific Reports, 2018, 8(1): 6999.
[28] SERVIN A D, DE LA TORRE-ROCHE R, CASTILLO-MICHEL H, et al. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil [J]. Plant Physiology Biochemistry, 2017, 110: 147-157.
[29] SHARMA N C, SAHI S V, NATH S, et al. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials [J]. Environmental Science & Technology, 2007, 41(14): 5137-5142.
[30] MILOSEVIC A,ROMEO D,WICK P. Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology [J]. Small, 2020, 16(36): 1907650.
[31] WANG Y, DENG C, ELMER W H, et al. Therapeutic delivery of nanoscale sulfur to suppress disease in tomatoes: in vitro imaging and orthogonal mechanistic investigation [J]. ACS Nano, 2022, 16(7): 11204-11217.
[32] GALLO V, ZAPPETTINI A, VILLANI M, et al. Comparative analysis of proteins regulated during cadmium sulfide quantum dots response in Arabidopsis thaliana wild type and tolerant mutants [J]. Nanomaterials, 2021, 11(3): 615.
[33] RUOTOLO R, MAESTRI E, PAGANO L, et al. Plant response to metal-containing engineered nanomaterials: an omics-based perspective [J]. Environmental Science & Technology, 2018, 52(5): 2451-2467.
[34] ALI S, RIZWAN M, HUSSAIN A, et al. Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.) [J]. Plant Physiology and Biochemistry, 2019, 140: 1-8.
[35] ZHAO L J, HUANG Y X, ZHOU H J, et al. GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper [J]. Environmental Science: Nano,2016,3(5):1114-1123.
[36] LANDA P, PREROSTOVA S, PETROVA S, et al. The transcriptomic response of Arabidopsis thaliana to zinc oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc [J]. Environmental Science & Technology, 2015, 49(24):14537-14545.
[37] HOLDEN P A, NISBET R M, LENIHAN H S, et al. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels [J]. Accounts of Chemical Research,2013,46(3):813-822.
[38] XU T, WANG Y, AYTAC Z, et al. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core-shell nanostructures [J]. ACS Nano,2022,16(4):6034-6048.
[39] DARLINGTON T K, NEIGH A M, SPENCER M T, et al. Nanoparticle characteristics affecting environmental fate and transport through soil [J]. Environmental Toxicology and Chemistry, 2009, 28(6): 1191-1199.
[40] JOSEPH S, GRABER E R, CHIA C, et al. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components [J]. Carbon Management, 2013, 4(3): 323-343.
[41] LARUE C, LAURETTE J, HERLIN-BOIME N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase [J]. Science of the Total Environment,2012,431:197-208.
[42] CIFUENTES Z, CUSTARDOY L, DE LA FUENTE J M, et al. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants [J]. Journal of Nanobiotechnology, 2010, 8: 1-8.
[43] SCHWABE F, SCHULIN R, LIMBACH L K, et al. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture [J]. Chemosphere, 2013, 91(4): 512-520.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-01-12
基金项目:国家自然科学基金(41907136)
作者简介:高 原,硕士研究生。Email:[email protected]
*通信作者:袁 鸣,博士,讲师。Email:[email protected]
引文格式:高原,雷诗涵,陈珂怡,等. 植物中金属纳米粒子的转运与转化机制研究进展[J]. 武汉工程大学学报,2024,46(2):167-174,183.
更新日期/Last Update: 2024-05-01