[2] BUNDSCHUH M, FILSER J, LUDERWALD S, et al. Nanoparticles in the environment: where do we come from, where do we go to? [J]. Environmental Sciences Europe, 2018, 30(6): 2-17.
[3] 齐明阳, 王秀峰, 冯文博, 等. 不同纳米材料在纳米肥料上的应用研究进展 [J]. 肥料与健康, 2023, 50(2): 1-5.
[4] 李晶,郭亮,崔海信,等. 纳米农药在植物中的吸收转运研究进展 [J]. 植物学报, 2020, 55(4): 513-528.
[5] 杨新萍, 赵方杰. 植物对纳米颗粒的吸收、转运及毒性效应 [J]. 环境科学, 2013, 34(11): 4495-4502.
[6] LOUGH T J, LUCAS W J. Integrative plant biology: role of phloem long-distance macromolecular trafficking [J]. Annual Review of Plant Biology, 2006, 57: 203-232.
[7] DIETZ K J, HERTH S. Plant nanotoxicology [J]. Trends in Plant Science, 2012, 17(3): 180-187.
[8] ROPPOLO D, DE RYBEL B, TENDON V D, et al. A novel protein family mediates Casparian strip formation in the endodermis [J]. Nature, 2011, 473(7347): 380-383.
[9] SCHYMURA S, FRICKE T, HILDEBRAND H, et al. Elucidating the role of dissolution in CeO2 nanoparticle plant uptake by smart radiolabeling [J]. Angewandte Chemie International Edition, 2017, 56(26): 7411-7414.
[10] Lü J, ZHANG S, LUO L, et al. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize [J]. Environmental Science: Nano, 2015, 2(1): 68-77.
[11] LUU D T, MAUREL C. Aquaporins in a challenging environment: molecular gears for adjusting plant water status [J]. Plant, Cell Environment, 2005, 28(1): 85-96.
[12] 周思雨, 唐文慧, 赵大球, 等. 芍药水通道蛋白基因PIP2-2片段的克隆与表达分析 [J]. 分子植物育种, 2017, 15(3): 800-804.
[13] WONG M H, MISRA R, GIRALDO J P, et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism [J]. Nano Letters, 2016, 16(2): 1161-1172.
[14] ONELLI E, PRESCIANOTTO-BASCHONG C, CACCIANIGA M, et al. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold [J]. Journal of Experimental Botany, 2008, 59(11): 3051-3068.
[15] ZAMBRYSKI P, CRAWFORD K. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants [J]. Annual Review of Cell Developmental Biology, 2000, 16(1): 393-421.
[16] LUCAS W J. Plasmodesmata: intercellular channels for macromolecular transport in plants [J]. Current Opinion in Cell Biology, 1995, 7(5): 673-680.
[17] GEISLER-LEE J, WANG Q, YAO Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana [J]. Nanotoxicology, 2013, 7(3): 323-337.
[18] ZHAI G, WALTERS K S, PEATE D W, et al. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar [J]. Environmental Science & Technology Letters, 2014, 1(2): 146-151.
[19] WANG W N, TARAFDAR J C, BISWAS P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake [J]. Journal of Nanoparticle Research, 2013, 15: 1-13.
[20] HONG J, PERALTA-VIDEA J R, RICO C, et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants [J]. Environmental Science & Technology, 2014, 48(8): 4376-4385.
[21] CHEN H. Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants [J]. Chemical Speciation & Bioavailability, 2018, 30(1): 123-134.
[22] SESHADRI B, BOLAN N S, NAIDU R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation [J]. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 524-548.
[23] RICO C M, JOHNSON M G, MARCUS M A. Cerium oxide nanoparticles transformation at the root-soil interface of barley (Hordeum vulgare L.) [J]. Environmental Science-Nano,2018,5(8):1807-1812.
[24] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470-480.
[25] LIN D H, XING B S. Root uptake and phytotoxicity of ZnO nanoparticles [J]. Environmental Science & Technology, 2008, 42(15): 5580-5585.
[26] ZHANG P,MA Y,ZHANG Z,et al. Biotransforma-tion of ceria nanoparticles in cucumber plants [J]. ACS Nano, 2012, 6(11): 9943-9950.
[27] ERIKSSON P, TAL A A, SKALLBERG A, et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement [J]. Scientific Reports, 2018, 8(1): 6999.
[28] SERVIN A D, DE LA TORRE-ROCHE R, CASTILLO-MICHEL H, et al. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil [J]. Plant Physiology Biochemistry, 2017, 110: 147-157.
[29] SHARMA N C, SAHI S V, NATH S, et al. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials [J]. Environmental Science & Technology, 2007, 41(14): 5137-5142.
[30] MILOSEVIC A,ROMEO D,WICK P. Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology [J]. Small, 2020, 16(36): 1907650.
[31] WANG Y, DENG C, ELMER W H, et al. Therapeutic delivery of nanoscale sulfur to suppress disease in tomatoes: in vitro imaging and orthogonal mechanistic investigation [J]. ACS Nano, 2022, 16(7): 11204-11217.
[32] GALLO V, ZAPPETTINI A, VILLANI M, et al. Comparative analysis of proteins regulated during cadmium sulfide quantum dots response in Arabidopsis thaliana wild type and tolerant mutants [J]. Nanomaterials, 2021, 11(3): 615.
[33] RUOTOLO R, MAESTRI E, PAGANO L, et al. Plant response to metal-containing engineered nanomaterials: an omics-based perspective [J]. Environmental Science & Technology, 2018, 52(5): 2451-2467.
[34] ALI S, RIZWAN M, HUSSAIN A, et al. Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.) [J]. Plant Physiology and Biochemistry, 2019, 140: 1-8.
[35] ZHAO L J, HUANG Y X, ZHOU H J, et al. GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper [J]. Environmental Science: Nano,2016,3(5):1114-1123.
[36] LANDA P, PREROSTOVA S, PETROVA S, et al. The transcriptomic response of Arabidopsis thaliana to zinc oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc [J]. Environmental Science & Technology, 2015, 49(24):14537-14545.
[37] HOLDEN P A, NISBET R M, LENIHAN H S, et al. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels [J]. Accounts of Chemical Research,2013,46(3):813-822.
[38] XU T, WANG Y, AYTAC Z, et al. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core-shell nanostructures [J]. ACS Nano,2022,16(4):6034-6048.
[39] DARLINGTON T K, NEIGH A M, SPENCER M T, et al. Nanoparticle characteristics affecting environmental fate and transport through soil [J]. Environmental Toxicology and Chemistry, 2009, 28(6): 1191-1199.
[40] JOSEPH S, GRABER E R, CHIA C, et al. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components [J]. Carbon Management, 2013, 4(3): 323-343.
[41] LARUE C, LAURETTE J, HERLIN-BOIME N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase [J]. Science of the Total Environment,2012,431:197-208.
[42] CIFUENTES Z, CUSTARDOY L, DE LA FUENTE J M, et al. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants [J]. Journal of Nanobiotechnology, 2010, 8: 1-8.
[43] SCHWABE F, SCHULIN R, LIMBACH L K, et al. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture [J]. Chemosphere, 2013, 91(4): 512-520.