[2] 王俪静, 吴晓莉. 声学超材料在绿色建筑通风隔声中的应用展望[J].林业机械与木工设备, 2022, 50(10):13-21.
[3] 牛亚文, 赵才友, 易强, 等. 可实现宽频隔声的全向通风铁路声屏障[J].浙江大学学报(工学版), 2021, 55(6):1048-1055.
[4] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics-Uspekhi, 1968, 10(4):509-514.
[5] LIU Z,ZHANG X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289:1734-1736.
[6] FOKIN V, AMBATI M, SUN C, et al. Method for retrieving effective properties of locally resonant acoustic metamaterials[J]. Physical Review B, 2007, 76(14):144302.
[7] LI Y, LIANG B, TAO X, et al. Acoustic focusing by coiling up space[J]. Applied Physics Letters, 2012, 101(23):233508.
[8] CAI X B, GUO Q Q, HU G K, et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators[J]. Applied Physics Letters, 2014, 105(12):121901.
[9] YANG Z J, GAO F, SHI X H, et al. Topological acoustics[J]. Physical Review Letters,2015, 114(11):114301.
[10] SONG Y G, CHENG Q, HUANG B, et al. Broadband fractal acoustic metamaterials for low-frequency sound attenuation[J]. Applied Physics Letters, 2016, 109(13):131901.
[11] LIU J, LI L P, XIA B Z, et al. Fractal labyrinthine acoustic metamaterial in planar lattices[J]. International Journal of Solids and Structures, 2018, 132/133:20-30.
[12] MAN X F, LUO Z, LIU J, et al. Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale[J]. Materials & Design, 2019, 180:107911.
[13] MAN X F, XIA B Z, LUO Z, et al. 3D Hilbert fractal acoustic metamaterials: low-frequency and multi-band sound insulation[J]. Journal of Physics D: Applied Physics, 2019, 52(19):195302.
[14] ZHAO X Z, LIU G Q, XIA D. Maze-like acoustic metamaterial for low-frequency broadband noise suppression[J]. Applied Physics Express, 2020, 13(2):27002.
[15] ZHU X F, LI K, ZHANG P, et al. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials[J]. Nature Communications, 2016, 7(1):11731.
[16] ESFAHLANI H,LISSEK H, MOSIG J R. Generation of acoustic helical wavefronts using metasurfaces[J]. Physical Review B, 2017, 95(2):024312.
[17] LI Y, JIANG X ,LI R Q, et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces[J]. Physical Review Applied, 2014, 2(6):064002.
[18] ZHONG J, ZHAO H G, YANG H B, et al. Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface[J]. Scientific Reports, 2019, 9:1181.
[19] KUMAR S, LEE H P. The present and future role of acoustic metamaterials for architectural and urban noise mitigations[J]. Acoustics, 2019, 1(3):590-607.
[20] FORD R D, KERRY G. The sound insulation of partially open double glazing[J]. Applied Acoustics, 1973, 6(1):57-72.
[21] KERRY G, FORD R D. The field performance of partially open dual glazing[J]. Applied Acoustics, 1974, 7(3):213-227.
[22] KANG J,BROCKLESBY M W. Feasibility of applying micro-perforated absorbers in acoustic window systems[J]. Applied Acoustics, 2004, 66(6):669-689.
[23] KANG J, LI Z M. Numerical simulation of an acoustic window system using finite element method[J]. Acta Acustica United Acustica, 2007,93:152-163.
[24] TONG Y G, TANG S K. Plenum window insertion loss in the presence of a line source—a scale model study[J]. Journal of the Acoustical Society of America, 2013, 133:1458-1467.
[25] TONG Y G, TANG S K, KANG J, et al. Full scale field study of sound transmission across plenum windows[J]. Applied Acoustics, 2015, 89:244-253.
[26] MARTELLO N Z, FAUSTI P, SANTONI A, et al. The use of sound absorbing shading systems for the attenuation of noise on building fa?ades. An experimental investigation[J]. Buildings, 2015, 5(4):1346-1360.
[27] 金伟, 蔡俊. 室内变电站散热通风口的新型消声结构研究[J]. 噪声与振动控制, 2010, 30(4):158-160.
[28] 韩珈琪. 高速铁路声屏障结构特性研究及减载式声屏障技术初探[D].成都:西南交通大学, 2014.
[29] 周立群, 韩健, 何宾, 等. V型减载式声屏障降噪特性的试验研究[J].噪声与振动控制, 2018, 38(6):199-204.
[30] KIM S H, LEE S H. Air transparent soundproof window[J]. AIP Advances, 2014, 4(11):117123.
[31] JUNG J W,KIM J E,LEE J W. Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range[J]. Applied Physics Letters, 2018, 112(4):041903.
[32] WANG X L, LUO X D, YANG B, et al. Ultrathin and durable open metamaterials for simultaneous ventilation and sound reduction[J]. Applied Physics Letters, 2019, 115(17):171902.
[33] LEE T, NOMURA T, DEDE M E, et al. Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls[J]. Physical Review Applied, 2019, 11(2):024022.
[34] HE J J, ZHOU Z L, ZHANG C X, et al. Ultrasparse and omnidirectional acoustic ventilated meta-barrier[J]. Applied Physics Letters,2022, 120(19):191701.
[35] ZHANG H L, ZHU Y F, LIANG B, et al. Omnidirectional ventilated acoustic barrier[J]. Applied Physics Letters, 2017, 111(20):203502.
[36] 林远鹏, 梁彬, 杨京, 等. 可实现宽频宽角度隔声的薄层通风结构[J].南京大学学报(自然科学版), 2019, 55(5):791-795.
[37] YANG J, LEE J S, LEE H R, et al. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission[J]. Applied Physics Letters, 2018, 112(9):091901.
[38] GHAFFARIVARDAVAGH R, NIKOLAJCZYK J, ANDERSON S, et al. Ultra-open acoustic metamaterial silencer based on Fano-like interference[J]. Physical Review B, 2019, 99(2):024302.
[39] CHEN A, ZHAO X G, YANG Z W, et al. Broadband labyrinthine acoustic insulator[J]. Physical Review Applied, 2022, 18(6): 064057.
[40] SHEN C, XIE Y, LI J, et al. Acoustic metacages for sound shielding with steady air flow[J]. Journal of Applied Physics, 2018, 123(12):124501.
[41] MELNIKOV A, MAEDER M, FRIEDRICH N, et al. Acoustic metamaterial capsule for reduction of stage machinery noise[J]. The Journal of the Acoustical Society of America, 2020, 147(3):1491-1503.
[42] LIU C K, SHI J J, ZHAO W, et al. Three-dimensional soundproof acoustic metacage[J]. Physical Review Letters, 2021, 127(8):084301.
[43] GE Y, SUN H X, YUAN S Q, et al. Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms[J]. Applied Physics Letters, 2018, 112(24):243502.
[44] GE Y, SUN H X, YUAN S Q, et al. Switchable omnidirectional acoustic insulation through open window structures with ultrathin metasurfaces[J]. Physical Review Materials, 2019, 3(6):065203.
[45] XIAO Z Q, GAO P L, HE X, et al. Multifunctional acoustic metamaterial for air ventilation, broadband sound insulation and switchable transmission[J]. Journal of Physics D: Applied Physics,2022, 56(4):044006.