[2] DAVIES J M. Slow release pesticides[J]. Trends in Biotechnology, 2001, 19(12): 489.
[3] 盛晶博,曹月坤,李长波,等.高吸油树脂制备及应用研究进展[J].应用化工,2018,47(11):2452-2454,2458.
[4] 陆平,王晓丽,彭士涛,等.高吸油材料的研究进展[J].现代化工,2019,39(4):22-26.
[5] 海靖杰,白波,杨丽衡,等.白刺籽粕接枝高吸油树脂NSM-g-P(MMA-co-BA)的制备与性能[J].材料导报,2015,29(10): 28-32,42.
[6] 胡中阳,司徒粤,黄洪,等.通过廉价硅源制备二氧化硅微球及其粒径控制[J].无机盐工业,2022,54(5): 79-83.
[7] 杨丹,高伟洪,杨树,等.微米级二氧化硅微球的制备及其粒径调控[J]. 印染,2022,48(4): 58-61,66.
[8] CAMPBELL Z S,PARKER M,BENNETT J A, et al. Continuous synthesis of monodisperse yolk-shell Titania microspheres[J]. Chemistry of Materials, 2018, 30(24): 8948-8958.
[9] 康文倩,王雄,程鹏飞,等.聚丙烯成核剂的研究进展[J].合成树脂及塑料,2022,39(4):82-87.
[10] WANG Z X, SALEEM J, BARFORD J P, et al. Preparation and characterization of modified rice husks by biological delignification and acetylation for oil spill cleanup [J]. Environmental Technology, 2020, 41(13/14/15): 1980-1991.
[11] CAO S B, DONG T, XU G B, et al. Study on structure and wetting characteristic of cattail fibers as natural materials for oil sorption [J]. Environmental Technology, 2016, 37(21/22/23/24): 3193-3199.
[12] LI Z, YANG Y W. Creation and bioapplications of porous organic polymer materials [J]. Journal of Materials Chemistry B, 2017, 5(47): 9278-9290.
[13] COUSINS K, ZHANG R W. Highly porous organic polymers for hydrogen fuel storage[J]. Polymers, 2019, 11(4): 690.
[14] YANG D H, TAO Y, DING X S, et al. Porous organic polymers for electrocatalysis [J]. Chemical Society Reviews, 2022, 51(2): 761-791.
[15] ZHANG Z W, JIA J, ZHI Y F, et al. Porous organic polymers for light-driven organic transformations [J]. Chemical Society Reviews,2022,51(7):2444-2490.
[16] CHEN D Y, LIU C, TANG J T, et al. Fluorescent porous organic polymers[J]. Polymer Chemistry, 2019, 10(10): 1168-1181.
[17] DEY K, MOHATA S,BANERJEE R. Covalent organic frameworks and supramolecular nano-synthesis[J]. ACS Nano,2021,15(8):12723-12740.
[18] MA W D, ZHENG Q, HE Y T, et al. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides[J]. Journal of the American Chemical Society, 2019, 141(45): 18271-18277.
[19] MU M M, WANG Y W, QIN Y T, et al. Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22856-22863.
[20] TAN K, GHOSH S, WANG Z Y U, et al. Covalent organic frameworks[J]. Nature Reviews Methods Primers, 2012, 41:6010-6022.
[21] DAHIYA S, PRAKASH K, MASRAM D T. Chromogenic covalent organic polymer-based microspheres as solid-state gas sensor[J]. Journal of Materials Chemistry C, 2020, 8(27): 9201-9204.
[22] KANDAMBETH S, VENKATESH V, SHINDE D B, et al. Self-templated chemically stable hollow spherical covalent organic framework [J]. Nature Communications, 2015,6(1):1-10.
[23] GUAN X Y, MA Y C, LI H, et al. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(13): 4494-4498.
[24] BISBEY R P, DICHTEL W R. Covalent organic frameworks as a platform for multidimensional polymerization[J]. ACS Central Science, 2017, 3(6): 533-543.
[25] YAO L L, ZHOU Z, WANG S X, et al. Phosphoryla-tion of covalent organic framework nanospheres for inhibition of amyloid-β peptide fibrillation [J]. Chemical Science, 2022, 13(20): 5902-5912.
[26] PURNAMA P,SAMSURI M,ISWALDI I. Properties enhancement of high molecular weight polylactide using stereocomplex polylactide as a nucleating agent [J]. Polymers, 2021, 13(11): 1725.
[27] HAN Y, WANG Q, ZHANG S, et al. Modified SiO2 microspheres/polyacrylate resin composites for the enhancement of oil-absorbing performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 671: 131642.
[28] 王新月, 杨少鹏, 王海,等. 奥斯特瓦尔德熟化机制及其在二元合金中的进展[J]. 现代物理,2022,12(2): 31-37.