|本期目录/Table of Contents|

[1]万其进*,廖华玲,刘义,等.石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J].武汉工程大学学报,2013,(02):16-23.[doi:103969/jissn16742869201302004]
 WAN Qi jin,LIAO Hua ling,LIU Yi,et al.Simultaneous determination of catechol and hydroquinone?in graphene modified electrode[J].Journal of Wuhan Institute of Technology,2013,(02):16-23.[doi:103969/jissn16742869201302004]
点击复制

石墨烯修饰电极同时测定邻苯二酚和对苯二酚(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2013年02期
页码:
16-23
栏目:
化学与化学工程
出版日期:
2013-02-28

文章信息/Info

Title:
Simultaneous determination of catechol and hydroquinone?in graphene modified electrode
文章编号:
16742869(2013)02001608
作者:
万其进*廖华玲刘义魏薇舒好杨年俊
武汉工程大学绿色化工过程教育部重点实验室,湖北省新型反应器与绿色化学工艺重点实验室,湖北 武汉 430074
Author(s):
WAN QijinLIAO HualingLIU YiWEI WeiSHU HaoYANG Nianjun
School of chemical Engineering and Pharmacy, Wuhan Institude of Technology,Key Lab for Green Chemical Process of Ministry of Education,Wuhan 430074, China
关键词:
石墨烯修饰电极示差脉冲法邻苯二酚对苯二酚
Keywords:
graphenes modified electrodes differential pulse methods catechols hydroquinones.
分类号:
O657.1
DOI:
103969/jissn16742869201302004
文献标志码:
A
摘要:
制备石墨烯玻碳修饰电极,进而采用循环伏安法、交流阻抗等电化学方法对该电极进行表征,研究该石墨烯修饰电极在邻苯二酚和对苯二酚上的电化学行为.结果表明,在石墨烯修饰电极上邻苯二酚的氧化峰电位和还原峰电位分别是270 mV和161 mV,对苯二酚氧化峰电位和还原峰电位分别是145 mV和64 mV,由于邻苯二酚和对苯二酚的氧化峰电位大约相离125 mV,还原峰大约相离97 mV,因此适合同时检测邻苯二酚和对苯二酚.邻苯二酚和对苯二酚的浓度在5.0×10-6~1.0×10-4 mol/L范围内与峰电流分别呈良好的线性关系;且在8.0×10-5~1.0×10-3 mol/L范围能同时检测邻苯二酚和对苯二酚,邻苯二酚的检测限可达5.0×10-7 mol/L,对苯二酚的检测限可达1.0×10-7 mol/L.该石墨烯修饰电极可作为电化学传感器用于邻苯二酚和对苯二酚的含量同时测定及环境水体中实际样品的分析.
Abstract:
A novel graphene modified glassy carbon electrode was fabricated. The resulting substrates were characterized by Cyclic Voltammetry and EIS in \[Fe(CN)6\]3-/4- solution and showed the electrochemical behavior of catechol and hydroquinone on the graphene modified glassy carbon electrode. Experiment result shows that the catechol oxidation peak potential is 270 mV and reduction peak potential is 161 mV, and the hydroquinone oxidation peak potential is 145 mV and reduction peak potential is 64 mV on the graphene modified electrode, respectively. The oxidation peak potential distance is about 125 mV and the reduction peak potential distance is about 97 mV of catechol and hydroquinone which are suited for the simultaneous detection. Catechol and hydroquinone have good electrocatalytic activity on modified electrode and the peak currents of differential pulse voltammetry are liner to the catechol and hydroquinone over the range of 5.0×10-6-1.0×10-4 mol/L, respectively, and the graphene modified electrode can simultaneously detect catechol and hydroquinone in the rang of 8.0×10-5-1.0×10-3 mol/L. The catechol detection limit is 5.0×10-7 mol/L, the hydroquinone detection limit is 1.0×10-7 mol/L.So the graphene modified electrode can be used for analysis the facilitation of actual samples and electrochemical sensors and biosensors.

参考文献/References:

[1]Novoselov K S, Geim A K. The rise of graphene\[J\]. Nat Mater, 2007, 6: 183191.

[2]Lee C G, Wei X D, Jeffrey W K, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene\[J\]. Science, 2008, 321(5887): 385388.
[3]Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of singlelayer graphene\[J\]. Nano Letters, 2008, 8(3): 902907.
[4]Lu C H, Yang H H, Zhu C L, et al. A Graphene platform for sensing biomolecules\[J\]. Angew Chem Int Ed, 2009, 48(26): 47854787.
[5]Zhou M, Zhai Y M, Dong S J. Electrochemical biosensing based on reduced graphene oxide\[J\]. Anal Chem, 2009, 81: 56035613.
[6]Shan C S, Yang H F, Han D X, et al. WaterSoluble graphene covalently functionalized by biocompatibe polylysine\[J\], Anal Chem, 2009, 81: 23782382.
[7]Fu C L, Yang W S, Chen X, et al. Direct electrochemistry of glucose oxidase on a graphite nanosheetNafion composite film modified electrode\[J\]. Electrochem Commun, 2009,11(5): 9971000.
[8]Wang Y, Li Y M, Tang L H, et al. Application od graphene modified electrode for selective detection of dopamine\[J\], Electrochem Commun, 2009,11: 889892.
[9]Alwarappan S, Erdem A, Liu C, et al. Probing the electrochemical properties of graphene nanosheets for biosensing application\[J\], J Phys Chem C, 2009, 113:88538857.
[10]Shang N G, Papakonstantinou P, McMullan M, et al. MarchettoFree efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes \[J\]. Adv Funct Mater, 2008,18: 35063514.
[11]Tang L H, Li Y M, Feng H B, et al. Preparation structure and electrochemical properties of graphene modified electrode\[J\]. Adv Mater, 2009,19:27822789.
[12]李强,张建斌,霍天瑞,等. 对苯二酚合成过程中酚醌物质的气相色谱法分析\[J\].广州化工,2011,39(1):104106.
[13]王微宏,喻晓峰,文莉.紫外分光光度法同时测定苯酚、邻苯二酚、对苯二酚\[J\].中国现代医学杂志,2002,12(10):8688.
14]李淮芬,谢成根,宗佳佳,等. 同步荧光法同时测定苯二酚中邻苯二酚和对苯二酚\[J\].冶金分析,2009,29(9):3135.
[15]杜建中,梁风颜,谭国兵. 双波长比值法测定苯二酚异构体的含量\[J\]. 福建分析测试,2009,18(12):3135.
[16]耿玉珍,刘葵,刘连伟. 吸光度比值导数法同时测定苯酚、邻苯二酚和对苯二酚\[J\].分析化学研究简报,1997,9(25):10241026.
[17]李江,李容,李永强,等.BPA在NaMMTCMC/GCE修饰电极上的电化学行为与检测\[J\].分析测试学报,2008,27(7):766768.
[18]Du H J, Ye J S, Zhang J Q, et al. Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for rutin\[J\]. Electroanailsis, 2010, 10, 22(20): 23992406.
19]杨平,李兰芳,蔡惠,等.双酚A在聚茜素红/碳纳米管电极上的伏安行为\[J\]. 武汉工程大学学报,2010,32(11):1821.
[20]蔡惠,廖华玲,刘义,等.对甲基本酚在PLYS/TiO2CS修饰电极上的电化学行为\[J\].武汉工程大学学报,2011,33(12):1317.
[21]Hrapovic S, Liu Y L, Male K B, et al., Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes\[J\]. Anal Chem, 2004, 76(4): 10831088.
[22]Yang M H, Yang Y H , Liu Y L, et al., Platinum NanoparticlesDoped Solgel/Carbon Nanotubes composite Electrochemical Sensors and biosensors\[J\].Bioelectron, 2006, 2(17): 11251131.

相似文献/References:

[1]杨平,李兰芳,蔡惠,等.双酚A在聚茜素红/碳纳米管电极上的伏安行为[J].武汉工程大学学报,2010,(11):18.[doi:10.3969/j.issn.16742869.2010.11.005]
 YANG Ping,LI Lan fang,CAI Hui,et al.Voltammetric behavior of bisphenol A on poly (alizarin red)/MWCNTs/GC composite modified electrode[J].Journal of Wuhan Institute of Technology,2010,(02):18.[doi:10.3969/j.issn.16742869.2010.11.005]
[2]朱寒冰,黄瑜,李亮.甲基橙掺杂聚吡咯纳米管的合成及其性能[J].武汉工程大学学报,2011,(07):17.
 ZHU Hanbing,HUANG Yu,LI Liang.Synthesis and performance of polypyrrole nanotubes doped with methyl orange[J].Journal of Wuhan Institute of Technology,2011,(02):17.
[3]陈旭,黄瑜,李亮.聚吡咯纳米回形针的合成与性能[J].武汉工程大学学报,2011,(07):52.
 CHEN Xu,HUANG Yu,LI Liang.Synthesis and performance of polypyrrole nanoclips[J].Journal of Wuhan Institute of Technology,2011,(02):52.
[4]蔡惠,廖华玲,刘义,等.对甲基苯酚在PLYS/TiO2CS修饰电极上的电化学行为[J].武汉工程大学学报,2011,(12):13.
 CAI Hui,LIAO Hua ling,LIU Yi,et al.Electrochemical behavior of pcresol on Poly(Lysine)/nanoTiO2chitosan modified electrodes and its determination[J].Journal of Wuhan Institute of Technology,2011,(02):13.
[5]李亮,朱寒冰,喻丹,等.甲基橙掺杂聚吡咯氧化石墨烯复合材料[J].武汉工程大学学报,2013,(05):43.[doi:103969/jissn16742869201305009]
 LI Liang,ZHU Han bing,YU Dan,et al.Composites of polypyrrole/graphene oxide doped by methyl orange[J].Journal of Wuhan Institute of Technology,2013,(02):43.[doi:103969/jissn16742869201305009]
[6]万其进,尚艳利,汪召豪,等.电纺聚乙烯醇纳米纤维膜无酶过氧化氢传感器的制备[J].武汉工程大学学报,2013,(08):7.[doi:103969/jissn16742869201308002]
 WAN Qi jin,SHANG Yan li,WANG Zhao hao,et al.Preparation of hydrogen peroxide nonenzyme biosensor based onPVA nanofibers film by electrospinning[J].Journal of Wuhan Institute of Technology,2013,(02):7.[doi:103969/jissn16742869201308002]
[7]李亮,胡军,班兴明,等.石墨烯的制备及表征[J].武汉工程大学学报,2014,(08):46.[doi:103969/jissn16742869201408008]
 LI Liang,HU Jun,BAN Xing ming,et al.Preparation and characterization of graphene[J].Journal of Wuhan Institute of Technology,2014,(02):46.[doi:103969/jissn16742869201408008]
[8]彭林峰,汪 洋,柳景亚,等.氢氧化铜/石墨烯复合材料的制备与表征[J].武汉工程大学学报,2015,37(08):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
 ,,et al.Preparation and characterization of copper hydroxide/graphene composite[J].Journal of Wuhan Institute of Technology,2015,37(02):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
[9]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
 ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(02):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[10]吴生丽,刘 忆,孙艳娟,等.功能化石墨烯四溴双酚A的电化学传感研究[J].武汉工程大学学报,2017,39(05):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
 WU Shengli,LIU Yi,SUN Yanjuan,et al.An Electrochemical Sensor for Tetrabromobisphenol A Determination Based on Functionalized Graphene[J].Journal of Wuhan Institute of Technology,2017,39(02):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
[11]张子俊,李 慧,张媛媛,等.基于纳米钯/石墨烯增敏效应对双酚A的电化学检测[J].武汉工程大学学报,2017,39(01):5.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]
 ZHANG Zijun,LI Hui,ZHANG Yuanyuan,et al.Bisphenol A Based on Enhancement Effect of Palladium Nanoparticle/Graphene[J].Journal of Wuhan Institute of Technology,2017,39(02):5.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]

备注/Memo

备注/Memo:
收稿日期:20121028基金项目:国家自然科学基金(21075096,21275113) 作者简介:万其进(1957),男,湖北鄂州人,教授,硕士研究生导师.研究方向:生命分析化学、电分析化学与生物传感器.*
更新日期/Last Update: 2013-04-16