|本期目录/Table of Contents|

[1]周剑秋,叶志雄,邱奇,等.温度与应变率对Cu70 Zn30孪晶变形的影响[J].武汉工程大学学报,2014,(05):42-47.[doi:103969/jissn16742869201405010]
 ZHOU Jian qiu,YE Zhi xiong,QIU Qi,et al.Effects of strain rate and temperature on deformation twinning in Cu70Zn30 alloy[J].Journal of Wuhan Institute of Technology,2014,(05):42-47.[doi:103969/jissn16742869201405010]
点击复制

温度与应变率对Cu70 Zn30孪晶变形的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2014年05期
页码:
42-47
栏目:
机电与信息工程
出版日期:
2014-05-31

文章信息/Info

Title:
Effects of strain rate and temperature on deformation twinning in Cu70Zn30 alloy
文章编号:
16742869(2014)05004206
作者:
周剑秋叶志雄邱奇江娥
武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
ZHOU JianqiuYE ZhixiongQIU QiJIANG E
School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
孪晶变形应变率温度
Keywords:
deformation twinningstrain ratetemperature
分类号:
TB31
DOI:
103969/jissn16742869201405010
文献标志码:
A
摘要:
为了研究孪晶变形过程中孪晶间距与孪晶片层厚度随温度与应变率变化情况,建立一个关于Cu70Zn30的流动应力本构方程,其中流动应力分为短程应力与长程应力,短程应力用JohnsonCook模型描述,长程应力采用幂次强化法则,运用Matlab软件模拟了Cu70Zn30在不同温度与不同应变率的条件下的孪晶变形,得出了孪晶变形过程中孪晶间距与孪晶片层厚度在不同条件下的演化曲线,通过对比实验结果,证实了低温与高应变率均能促进孪晶变形,其效果随着温度的降低与应变率的升高而增强;相对于应变率的影响,温度的降低更能促使孪晶的生长,孪晶间距的大小与孪晶片层的厚度随着温度的降低与应变率的升高而减小.
Abstract:
Aimed at the evolutions of twin spacing and twin layer thickness on deformation twinning,a flow stress equation of Cu70Zn30 alloy was proposed.The flow stress of the material was divided into two parts of shortrange part and longrange part,the shortrange part of the flow stress described by JohnsonCook equation because of its dependency of temperature and strain rate,the longrange parts adopting the power strengthening law.Deformation twinnings under the different temperatures and different strain rates was simulated by Matlab.Compared with experimental results,it was found low temperature and high strain rate promote deformation twinning;besides,deformation twining is more susceptible to low temperature than high strain rate,and TB spacing and twin layer thickness decrease as the strain rate increases or the temperature drops.

参考文献/References:

[1]CHRISTIAN J W,MAHAJAN S.Deformation twinning[J].Progress in Materials Science,1995,39(1):1157.[2]ZHU L,RUAN H,LI X,et al.Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals[J].Acta Materialia,2011,59(14):55445557.[3]KOCHMANN D M,LE K C.A continuum model for initiation and evolution of deformation twinning[J].Journal of the Mechanics and Physics of Solids,2009,57(6):9871002.[4]STEBNER A P,VOGEL S C,NOEBE R D,et al.Micromechanical quantification of elastic,twinning,and slip strain partitioning exhibited by polycrystalline,monoclinic nickeltitanium during large uniaxial deformations measured via insitu neutron diffraction[J].Journal of the Mechanics and Physics of Solids,2013,61(11):23022330.[5]MEYERS M A,VOHRINGER O,LUBARDA V A.The onset of twinning in metals:a constitutive description[J].Acta Materialia,2001,49(19):40254039.[6]SHEN Y F,LU L,LU Q H,et al.Tensile properties of copper with nanoscale twins[J].Scripta Materialia,2005,52(10):989994.[7]SCHIOTZ J,JACOBSEN K W.A maximum in the strength of nanocrystalline copper[J].Science,2003,301(5638):13571359.[8]JOHARI O,THOMAS G.Substructures in explosively deformed Cu and CuAl alloys[J].Acta Metallurgica,1964,12(10):11531159.[9]CRIMP M A,SMITH B C,MIKKOLA D E.Substructure development in shockloaded Cu-8.7 Ge and Copper:the role of temperature,grain size and stacking fault energy[J].Materials Science and Engineering,1987(96):2740.[10]GRAY III G T,HUANG J C.Influence of repeated shock loading on the substructure evolution of 99.99 wt.% aluminum[J].Materials Science and Engineering:A,1991,145(1):2135.[11]MURR L E,ESQUIVEL E V.Observations of common microstructural issues associated with dynamic deformation phenomena:Twins,microbands,grain size effects,shear bands,and dynamic recrystallization[J].Journal of Materials Science,2004,39(4):11531168.[12]BLEWITT T H,COLTMAN R R,JAMISON R E,et al.Radiation hardening of copper single crystals[J].Journal of Nuclear Materials,1960,2(4):277298.[13]WANG Y,JIAO T,MA E.Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation[J].Materials Transactions,2003,44(10):19261934.[14]XIAO G H,TAO N R,LU K.Effects of strain,strain rate and temperature on deformation twinning in a CuZn alloy[J].Scripta Materialia,2008,59(9):975978.[15]梁晓光,伞星源,杨鹏,等.Cu及CuZn合金压缩行为机理的研究\[J\]. 昆明理工大学学报:自然科学版,2011,36(4):2328.LIANG Xiaoguang, SAN Xingyuan,YANG Peng,et al.Study on mechanism of compression behavior of Cu and CuZn alloys\[J\].Journal of Kunming University of Science and Technology,2011,36(4):2328.(in Chinese)[16]NEMATNasser S,LI Y.Flow stress of fcc polycrystals with application to OFHC Cu[J].Acta Materialia,1998,46(2):565577.[17]JOHNSON G R,COOK W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures\[C\]//Proceedings of the 7th International Symposium on Ballistics.Netherlands,1983:541547.[18]XIAO G H,TAO N R,Lu K.Strengthductility combination of nanostructured CuZn alloy with nanotwin bundles[J].Scripta Materialia,2011,65(2):119122.[19]BAHMANPOUR H,YOUSSEF K M,HORKY J, et al.Deformation twins and related softening behavior in nanocrystalline Cu30% Zn alloy\[J\].Acta Materialia,2012,60(8):33403349.[20]ZHANG S,ZHOU J,WANG L,et al.The effect of the angle between loading axis and twin boundary on the mechanical behaviors of nanotwinned materials[J].Materials & Design,2013(45):292299.[21]HAGHSHENAS M,KLASSEN R J.Indentationbased assessment of the dependence of geometrically necessary dislocations upon depth and strain rate in FCC materials[J].Materials Science and Engineering:A,2013(586):223230.[22]FISK M,ION J C,LINDGREN L E.Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment[J].Computational Materials Science,2014(82):531539.[23]KARAMAN I,SEHITOGLU H,BEAUDOIN A J,et al.Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip[J].Acta Materialia,2000,48(9):20312047.[24]MISHRA A,KAD B K,GREGORI F,et al.Microstructural evolution in copper subjected to severe plastic deformation:Experiments and analysis[J].Acta Materialia,2007,55(1):1328.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20140417基金项目:新世纪优秀人才支持计划(NCET120712)作者简介:周剑秋(1972),男,江苏南京人,教授,博士.研究方向:先进材料力学行为.
更新日期/Last Update: 2014-06-15