[1] MATTEO Paris, JAROSLAV Rehacek. Quantum state estimation[M]. Berlin: Springer Science & Business Media, 2004:1-8.[2] 戴宏毅.约化密度矩阵及其在量子信息处理中的应用[J].大学物理, 2010,29(2):31-33.DAI Hong-yi. Reduced density matrix and its application in quantum information processing[J]. College Physics, 2010,29(2):31-33.(in Chinese)[3] DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.[4] 胡端平,唐超.一致矩阵的特征性质[J].武汉工程大学学报,2009,31(5):93-94.HU Duan-ping, TANG Chao. The character of consistent matrix[J]. Journal of Wuhan Institute of Technology, 2009,31(5):93-94.(in Chinese)[5] 杨建华,孙霞林.协方差矩阵在非负二次型估计中的可容许性[J].武汉工程大学学报,2007,29(1):75-77.YANG Jian-hua, SUN Xia-lin. Compatibility of non-negative quadractic estimation[J]. Journal of Wuhan Institute of Technology, 2007,29(1):75-77.(in Chinese)[6] EMMANUEL J Candès, TERENCE Tao. The power of convex relaxation: Near-optimal matrix completion[J]. IEEE Transactions on Information Theory, 2010,56(5):2053-2080.[7] CAI Jian-feng, EMMANUEL J Candes, SHEN Zuowei. A sngular value thresholding algorithm for matrix completion[J]. Siam Journal of Optimization, 2010, 20(4):1956-1982.[8] DAVE Gross. Recovering low-rank matrices from few coefficients in any basis[J]. IEEE Transactions on Information Theory, 2011, 57(3):1548-1566.
[1]韦 仙,康睿丹.基于降维压缩法的图像重构[J].武汉工程大学学报,2015,37(12):69.[doi:10. 3969/j. issn. 1674-2869. 2015. 12. 015]
-.Image reconstruction based on dimension reduction and compression technology[J].Journal of Wuhan Institute of Technology,2015,37(02):69.[doi:10. 3969/j. issn. 1674-2869. 2015. 12. 015]