|本期目录/Table of Contents|

[1]张胜东,童 雄*,张 翼,等.基于BP人工神经网络的球磨机钢球配比预测模型[J].武汉工程大学学报,2016,38(3):299-307.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 020]
 ZHANG Shengdong,TONG Xiong *,ZHANG Yi,et al.Prediction Model on Matching Steel Ball in Mill Based on BP Artificial Neural Network[J].Journal of Wuhan Institute of Technology,2016,38(3):299-307.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 020]
点击复制

基于BP人工神经网络的球磨机钢球配比预测模型(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年3期
页码:
299-307
栏目:
机电与信息工程
出版日期:
2016-06-22

文章信息/Info

Title:
Prediction Model on Matching Steel Ball in Mill Based on BP Artificial Neural Network
作者:
张胜东123童 雄123*张 翼4蔡兵兵4谢 贤123
1. 复杂有色金属资源清洁利用国家重点实验室,云南 昆明 650093;2. 昆明理工大学国土资源工程学院,云南 昆明 650093;3. 云南省金属矿尾矿资源二次利用工程研究中心,云南 昆明 650093;4. 武汉工程大学资源与土木工程学院,湖北 武汉 430074
Author(s):
ZHANG Shengdong123 TONG Xiong 123* ZHANG Yi 4 CAI Bingbing4XIE Xian123
1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China;2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;3. Yunnan Province Engineering Research Center for Reutilization of Metal Tailings Resources, Kunming 650093, China; 4. School of Resources and Civil Engineering ,Wuhan Institute of Technology, Wuhan 430074, China
关键词:
磨矿钢球配比粒级分布BP神经网络预测模型
Keywords:
grinding proportion of matching steel balls of different sizes particle size distribution predicted model based on back prorogation artificial neural network
分类号:
TQ053
DOI:
10. 3969/j. issn. 1674?2869. 2016. 03. 020
文献标志码:
A
摘要:
采用BP神经网络对实验室磷矿球磨机磨矿中的钢球配比与磨矿产品粒级分布的关系进行建模, 解决选矿厂磨机生产中钢球配比的计算问题. 建立的BP神经网络预测模型通过磨矿产品粒级分布来预测对应的球磨机内钢球配比,预测绝对误差控制在3%以内,但预测相对误差较大且不稳定,说明在钢球配比与磨矿产品粒级分布的关系建模中该建模方法具有一定研究价值,该模型进一步优化后可具有工业应用价值.
Abstract:
The error back prorogation (BP) artificial neural network was applied to establish the prediction model about the relationship between the particle size distribution of grinding product and the proportion of matching steel balls of different sizes in the ball mill of phosphate ore in the laboratory, which can predict the proportion of different size balls in the ball mill through the particle size distribution of grinding product. The mean absolute percentage error of the prediction can be controlled in 3%, but the mean relative percentage error of prediction is unacceptable, which illustrates that the modeling method has some research values, but it should be studied in-depth to reduce the error of model for application in the factory.

参考文献/References:

[1] 吴彩斌,段希祥. 不同装球制度下球磨机产品粒度组成特性研究[J] . 有色金属(选矿部分), 2002(3):36-37. WU C B,DUAN X X. Study on ball mills’product size characteristic in different system of load ball[J]. Nonferrous metals, 2002(3):36-37. [2] 谢恒星,张一清,李松仁,等. 钢球的应用状况与磨损机理[J] . 武汉化工学院学报, 2002, 24(1):42-44.XIE H X,ZHANG Y Q,LI S R,et al. Application and wear mechanism of steel balls[J]. Journal of Wuhan institute of chemical technology, 2002, 24(1):42-44. [3] 韩力群. 人工神经网络教程[M]. 北京:北京邮电大学出版社,2006. [4] 王淑红,戈保梁,李英龙. 基于神经网络的非线性建模在选矿中应用的探讨[J]. 有色矿冶,2001,17(3):21-23. WANG S H,GE B L,LI Y L. A research on the application of nonlinear modeling based on artifical neural network in minral processing[J]. Non-ferous mining and metallurgy,2001,17(3):21-23. [5] 温福星. 神经网络在选矿中的应用[J]. 科学时代,2011(19):107. WEN F X.The application of artifical neural network in minral processing[J]. Science times,2011(19):107. [6] 魏海坤. 神经网络结构设计的理论和方法[M]. 北京: 国防工业出版社,2005. [7] 傅荟璇,赵红. MATLAB神经网络应用设计[M]. 北京:机械工业出版社,2010:55. [8] 孙志强,葛哲学,刘瑛. 神经网络理论与MATLAB7实现[M]. 北京:电子工业出版社,2005. [9] 董长虹. MATLAB神经网络与应用[M]. 北京: 国防工业出版社,2007.本文编辑:陈小平

相似文献/References:

[1]石和彬,钟宏,刘羽,等.中低品位磷块岩在磨矿过程中的成分分异[J].武汉工程大学学报,2011,(03):87.[doi:10.3969/j.issn.16742869.2011.03.025]
 SHI He bin,ZHONG Hong,LIU Yu,et al.Component differentiation of midlow grade phosphate rocks in grinding[J].Journal of Wuhan Institute of Technology,2011,(3):87.[doi:10.3969/j.issn.16742869.2011.03.025]
[2]张汉泉,付金涛,路漫漫,等.冷却方式对焙烧鲕状赤铁矿磨矿性能影响[J].武汉工程大学学报,2014,(11):12.[doi:103969/jissn167428692014011003]
 ZHANG Han quan,FU Jin tao,LU Man man,et al.Influence of cooling mode on grindability of roasting oolitic hematite[J].Journal of Wuhan Institute of Technology,2014,(3):12.[doi:103969/jissn167428692014011003]

备注/Memo

备注/Memo:
更新日期/Last Update: 2016-06-23