|本期目录/Table of Contents|

[1]黄宏伟,张田田,丁康俊,等.MPCVD制备金刚石中的光谱分析[J].武汉工程大学学报,2017,39(01):39-44.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 007]
 HUANG Hongwei,ZHANG Tiantian,DING Kangjun,et al.Optical Emission Spectroscopy Analysis of Diamond Deposited by MPCVD[J].Journal of Wuhan Institute of Technology,2017,39(01):39-44.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 007]
点击复制

MPCVD制备金刚石中的光谱分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年01期
页码:
39-44
栏目:
材料科学与工程
出版日期:
2017-03-29

文章信息/Info

Title:
Optical Emission Spectroscopy Analysis of Diamond Deposited by MPCVD
作者:
黄宏伟12张田田12丁康俊12马志斌12*付秋明12
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430074;2. 等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430074
Author(s):
HUANG Hongwei12ZHANG Tiantian12DING Kangjun12MA Zhibin12*FU Qiuming12
1. School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China;2. Hubei Key Laboratory of Plasma Chemical and Advanced Materials(Wuhan Institute of Technology), Wuhan 430074, China
关键词:
微波等离子体化学气相沉积发射光谱CH4体积分数活性基团
Keywords:
microwave plasma chemical vapor deposition optical emission spectroscopy CH4 volume fraction active species
分类号:
O78
DOI:
10. 3969/j. issn. 1674?2869. 2017. 01. 007
文献标志码:
A
摘要:
在微波等离子体化学气相沉积(MPCVD)多晶金刚石的过程中,利用发射光谱法(OES)诊断等离子体中活性基团的分布情况,研究了沉积气压、CH4体积分数以及气体流量对等离子体中基团谱峰强度的影响,讨论了相关基团与金刚石沉积速率和质量之间的关系. 结果表明:在微波功率800 W下,气压从12 kPa增加到16 kPa,等离子体中各基团浓度均显著增加,有利于提高金刚石的沉积速率. 气压16 kPa、功率800 W时,CH4体积分数从2%增加到7%,C2基团峰值强度从12 600 cps 增加到24 800 cps,而氢原子峰值强度从60 000 cps 变为61 000 cps,导致C2基团与氢原子浓度比值从0.21增加到0.40,金刚石的沉积速率虽然提高,但沉积质量下降. 当沉积气压和CH4体积分数分别从16 kPa、4%提高到18 kPa、6%时,C2基团峰值强度从28 000 cps 增加到37 000 cps,同时保持了C2基团与氢原子浓度比值约0.28不变,既保证了金刚石沉积质量又显著提高了金刚石的沉积速率. 等离子体体系中基团浓度基本不受气体流量变化的影响.
Abstract:
The distribution of active species in plasma was diagnosed by the optical emission spectroscopy (OES) in the precess of the deposition of polycrystalline diamond by microwave plasma chemical vapor deposition(MPCVD). The influences of the deposition pressure, the ratio of CH4 and the rate of gas flow on the intensity of active species in plasma were investigated, and the relationship between the active species with the deposition rate and the quality of diamond was discussed. The results show that at the microwave power of 800 W, the concentration of active species in plasma significantly increases with the increase of deposition pressure from 12 kPa to 16 kPa, which raises the deposition rate of diamond. At the deposition pressure of 16 kPa and microwave power of 800 W, the intensity of C2 group and hydrogen atom peak increase respectively from 12 600 cps and 60 000 cps to 24 800 cps and 61 000 cps when the CH4 volume fractions are from 2% to 7%, which lead to the increase of the concentration ratios of C2 group and hydrogen atom (from 0.21 to 0.40), demonstrating that the deposition rate of diamond increases, but the quality of diamond decreases. The intensity of C2 group peak increases from 28 000 cps to 37 000 cps, and the ratio of C2 group and hydrogen atom keeps about 0.28, when the deposition pressure and CH4 volume fraction increase from 16 kPa and 4% to 18 kPa and 6%, respectively, which improves the deposition rate and the quality of diamond. We also find that the concentration of the groups in plasma system is not affected by the gas flow rate.

参考文献/References:

[1] SANCHEZ O, GARCIA M M, VAZQUEZ L, et al. Influence of oxygen on the deposition of diamond coatings by microwave plasma CVD[J].Vacuum, 1994, 45(10/11):1015-1016. [2] LIAO W H, LIN C R, WEI D H. Effect of CH4 concentration on the growth behavior, structure and transparent properties of ultrananocrystalline diamond films synthesized by focused microwave Ar/CH4/H2 plasma jets[J]. Applied Surface Science, 2013, 270(4):324-330. [3] SU C H, CHANG C Y. Effect of CH/C2 species density on surface morphology of diamond film grown by microwave plasma jet chemical vapor deposition[J]. Materials Transactions, 2008, 49(6):1380-1384. [4] 马志斌, 陶利平, 翁国峰,等. 微波等离子体化学气相沉积金刚石光谱分析[J]. 武汉工程大学学报, 2012, 34(6):49-52. MA Z B, TAO L P, WEN G F, et al. Spectroscopic analysis of microwave plasma for chemical vapor deposition diamond[J]. Journal of Wuhan Institute of Technology, 2012, 34(6):49-52. [5] WANG C S, CHEN H C, SHIH W C, et al. Effect of H2/Ar plasma on growth behavior of ultra- nanocrystalline diamond films: the TEM study[J]. Diamond & Related Materials, 2010, 19(19):138- 142. [6] RICHLEY J C, KELLY M W, ASHFOLD M N R, et al. Optical emission from microwave activated C/H/O gas mixtures for diamond chemical vapor deposition[J]. Journal of Physical Chemistry A, 2012, 116(38):9447-9458. [7] HAN S B. Effect of Oxygen for diamond film synthesis with C-Hexane in microwave plasma enhanced CVD process[J]. Journal of Electrical Engineering & Technology, 2012, 7(6):983-989. [8] 湛玉龙, 马志斌, 翁国峰,等. 基体对金刚石厚膜质量的影响研究[J]. 金刚石与磨料磨具工程, 2011, 31(5):5-9. ZHAN Y L, MA Z B, WENG G F, et al. Investigation on the effect of substrate on quality of diamond thick film[J]. Diamond & Abrasives Engineering, 2011, 31(5):5-9. [9] LUO L X, WEI-DONG W U, ZHU Y H, et al. Spectrum analysis of plasma in CH4/H2 and CH4/He systems[J]. High Power Laser & Particle Beams, 2008, 20(6):899-902. [10] 曹为, 马志斌. 高气压MPCVD沉积金刚石的光谱研究[J]. 光谱学与光谱分析, 2015(11):3007-3011. CAO W, MA Z B. Optical spectroscopy for high- pressure microwave plasma chemical vapor deposition of diamond films[J]. Spectroscopy and Spectral Analysis, 2015(11):3007-3011. [11] ANDO Y, TOBE S,TAHARA H. Diamond deposition an Mo with thermal stress buffer layer coated mild steel substrate by combustion flame CVD[J]. Vaccum,2009,83(1):102-106.[12] ELLIOTT M A, MAY P W,PETHERBRIDGE J,et al. Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasmas [J]. Diamond and Related Materials, 2000,9(3):311-316.[13] VANDEVELDE T,NESLADEK M,QUAEYHAEGENS C,et al. Optical emission spectroscopy of the plasma during CVD diamond growth with nitrogen addition [J]. Thin Solid Films,1996,290/291(24): 143-147.[14] FERRARI A C,ROBERTSON J. Raman spectroscopy in carbons:from nanotubes to diamond[M].Beijing: Chemical Industry Press, 2007:243-252. [15] DING M Q,LI L,FENG J. Astudy of high-quality freestanding diamond films grown by MPCVD[J]. Applied Surface Science,2012,258(16): 5987-5991.

相似文献/References:

[1]翁国峰,湛玉龙,陶利平,等.高压微波氢等离子体Balmer线系的实验[J].武汉工程大学学报,2011,(07):73.
 WENG Guofeng,ZHAN Yulong,TAO Liping,et al.Emission spectroscopy investigation of hydrogen balmerseries in high pressure microwave hydrogen plasma[J].Journal of Wuhan Institute of Technology,2011,(01):73.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-02-22