|本期目录/Table of Contents|

[1]王亦欣,陈 茜,匡 映,等.植物多糖气凝胶材料应用的研究进展[J].武汉工程大学学报,2017,39(05):443-449.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 007]
 WANG Yixin,CHEN XI,KUANG Ying,et al.Progress in Application of Polysaccharide Aerogels[J].Journal of Wuhan Institute of Technology,2017,39(05):443-449.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 007]
点击复制

植物多糖气凝胶材料应用的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
39
期数:
2017年05期
页码:
443-449
栏目:
材料科学与工程
出版日期:
2017-12-19

文章信息/Info

Title:
Progress in Application of Polysaccharide Aerogels
文章编号:
20170507
作者:
王亦欣陈 茜匡 映姜发堂严文莉*
湖北工业大学生物工程与食品学院,湖北 武汉 430068
Author(s):
WANG YixinCHEN XIKUANG YingJIANG FatangYAN Wenli*
Biological and Food Engineering Department,Hubei University of Technology,Wuhan 430068, China
关键词:
气凝胶植物多糖绿色环保型材料应用
Keywords:
aerogels polysaccharide environmental friendly materials application
分类号:
TS20
DOI:
10. 3969/j. issn. 1674?2869. 2017. 05. 007
文献标志码:
A
摘要:
植物多糖气凝胶是一种轻质多孔状材料,具有高孔隙率、高比表面积、低密度、环境友好等优异的性能. 本文系统介绍了植物多糖气凝胶材料制备方法、结构性能及其发展历程,并总结了其在不同领域的应用研究. 因其具有导热系数低、吸附能力强、释放药物量可控和具有一定的组织再生能力等特点,植物多糖气凝胶可作为隔热材料、吸附材料、药物包载材料和组织再生、创伤护理材料. 植物多糖气凝胶材料作为一种绿色环保型材料,在不同应用领域将有更广阔的应用前景.
Abstract:
Polysaccharide aerogels are light porous materials with excellent performance such as high porosity,high specific surface area,low density and environmental friendliness. The preparation method,structure performance and history of plant polysaccharide aerogels were systematically introduced,and their applications in different fields were summarized. Aerogel materials can be used as insulation materials,adsorbent materials,drug carriers and tissue regeneration,trauma care materials due to their low thermal conductivity, strong adsorption capacity,distinctive ability of controlling drug release under different conditions and specific tissue regeneration capacity. As environmental friendly materials,polysaccharide aerogels will have a brighter application prospect in the future.

参考文献/References:

[1] KISTLER S S. Coherent expanded aerogels and jellies [J]. Nature,1931,127(3211):741. [2] TEICHNER S J,NICOLAON G A,VICARINI M A,et al. Inorganic oxide aerogels [J]. Advances in Colloid and Interface Science,1976,5(3): 245-273. [3]PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde [J]. Journal of Materials Science, 1989,24(9): 3221-3227. [4] LIU J,WILLF?R S,XU C. A review of bioactive plant polysaccharides: biological activities,functionalization,and biomedical applications [J]. Bioactive Carbohydrates and Dietary Fibre,2015,5(1): 31-61. [5] KISTLER S S. Coherent expanded aerogels [J]. Rubber Chemistry and Technology,1932,5(4): 600-603. [6] HEATH L,THIELEMANS W. Cellulose nanowhisker aerogels[J]. Green Chemistry,2010,12(8): 1448- 1453. [7] GAVILLON R,BUDTOVA T. Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions[J]. Biomacromolecules,2008,9(1): 269- 277. [8] DUCHEMIN B J C,STAIGER M P,TUCKER N,et al. Aerocellulose based on all-cellulose composites [J]. Journal of Applied Polymer Science,2010,115(1): 216-221. [9] COMIN L M,TEMELLI F,SALDA?A M D A. Barley beta-glucan aerogels via supercritical CO2 drying [J]. Food Research International,2012,48(2): 442-448. [10] CHEN H B,CHIOU B S,WANG Y Z,et al. Biodegradable pectin/clay aerogels [J]. ACS Applied Materials & Interfaces,2013,5(5): 1715-1721. [11] UBEYITOGULLARI A,CIFTCI O N. Formation of nanoporous aerogels from wheat starch [J]. Carbohydrate Polymers, 2016,147: 125-132. [12] JAYAKUMAR R,PRABAHARAN M,NAIR S V,et al. Novel chitin and chitosan nanofibers in biomedical applications [J]. Biotechnology Advances,2010,28(1): 142-150. [13] CALL F. Preparation of dry clay-gels by freeze-drying [J]. Nature,1953,172(4368): 126. [14] SEETAPAN N,LIMPARYOON N,GAMONPILAS C,et al. Effect of cryogenic freezing on textural properties and microstructure of rice flour/tapioca starch blend gel [J]. Journal of Food Engineering,2015,151: 51-59. [15] NI X W,KE F,XIAO M,et al. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels[J]. International Journal of Biological Macromolecules,2016,92:1130-1135. [16] STERGAR J,MAVER U. Review of aerogel-based materials in biomedical applications [J]. Journal of Sol-Gel Science and Technology,2016,77(3): 738-752. [17] VERONOVSKI A,NOVAK Z,KNEZ ?. Synthesis and use of organic biodegradable aerogels as drug carriers [J]. Journal of Biomaterials Science, Polymer Edition,2012,23(7): 873-886. [18] VALO H,AROLA S,LAAKSONEN P,et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels [J]. European Journal of Pharmaceutical Sciences,2013,50(1): 69-77. [19] WANG D,SILBAUGH T,PFEFFER R,et al. Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels [J]. Powder Technology,2010,203(2): 298-309. [20] JIN C,HAN S,LI J,et al. Fabrication of cellulose- based aerogels from waste newspaper without any pretreatment and their use for absorbents [J]. Carbohydrate Polymers,2015,123: 150-156. [21] SALAM A, VENDITTI R A, PAWLAK J J, et al. Crosslinked hemicellulose citrate-chitosan aerogel foams [J]. Carbohydrate Polymers,2011,84(4): 1221-1229. [22] ESCUDERO R R,ROBITZER M,DI RENZO F,et al. Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule [J]. Carbohydrate Polymers,2009,75(1): 52-57. [23] NGUYEN S T, FENG J,NG S K, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,445: 128-134. [24] RUDAZ C,COURSON R,BONNET L,et al. Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel [J]. Biomacromolecules,2014,15(6): 2188-2195. [25] COMIN L M, TEMELLI F, SALDA?A M D A. Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2 [J]. Journal of Food Engineering,2012,111(4): 625-631. [26] SHI Z Q,GAO H C,FENG J,et al. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration [J]. Angewandte Chemie,2014,53(21): 5380-5384. [27] LU T,LI Q,CHEN W, et al. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold [J]. Composites Science and Technology,2014,94: 132-138. [28] GARC?A-GONZ?LEZ C A,ALNAIEF M,SMIRNOVA I. Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems [J]. Carbohydrate Polymers,2011,86(4): 1425-1438. [29] GARC?A-GONZ?LEZ C A,JIN M,GERTH J,et al. Polysaccharide-based aerogel microspheres for oral drug delivery [J]. Carbohydrate Polymers,2015,117:797-806. [30] MALLEPALLY R R,BERNARD I,MARIN M A,et al. Superabsorbent alginate aerogels [J]. The Journal of Supercritical Fluids,2013,79:202-208.

相似文献/References:

[1]王若冲,陈振宇,李厚燊,等.基于MXene气凝胶的微型超级电容器[J].武汉工程大学学报,2021,43(03):288.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
 WANG Ruochong,CHEN Zhenyu,LI Houshen,et al.Micro-Supercapacitor Based on MXene Aerogel[J].Journal of Wuhan Institute of Technology,2021,43(05):288.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
[2]戴 萌,薛开诚,郭 立,等.还原氧化石墨烯气凝胶水蒸发诱导发电性能的研究[J].武汉工程大学学报,2023,45(06):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
 DAI Meng,XUE Kaicheng,GUO Li,et al.Water Evaporation-Induced Power Generation Performance ofReduced Graphene Oxide Aerogels[J].Journal of Wuhan Institute of Technology,2023,45(05):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
[3]薛开诚,郭 立,刘银波,等.多壁碳纳米管/还原氧化石墨烯气凝胶的水蒸发性能研究[J].武汉工程大学学报,2024,46(03):267.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]
 XUE Kaicheng,GUO Li,LIU Yinbo,et al.Water evaporation properties of multi-walled carbon nanotubes/reduced graphite oxide aerogel[J].Journal of Wuhan Institute of Technology,2024,46(05):267.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]

备注/Memo

备注/Memo:
收稿日期:2017-04-19 基金项目:湖北省科技厅重大专项(2016AC164);湖北工业大学博士科研启动基金(BSQD12145) 作者简介:王亦欣,硕士研究生. E-mail: [email protected]
更新日期/Last Update: 2017-10-25