[1] KISTLER S S. Coherent expanded aerogels and jellies [J]. Nature,1931,127(3211):741. [2] TEICHNER S J,NICOLAON G A,VICARINI M A,et al. Inorganic oxide aerogels [J]. Advances in Colloid and Interface Science,1976,5(3): 245-273. [3]PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde [J]. Journal of Materials Science, 1989,24(9): 3221-3227. [4] LIU J,WILLF?R S,XU C. A review of bioactive plant polysaccharides: biological activities,functionalization,and biomedical applications [J]. Bioactive Carbohydrates and Dietary Fibre,2015,5(1): 31-61. [5] KISTLER S S. Coherent expanded aerogels [J]. Rubber Chemistry and Technology,1932,5(4): 600-603. [6] HEATH L,THIELEMANS W. Cellulose nanowhisker aerogels[J]. Green Chemistry,2010,12(8): 1448- 1453. [7] GAVILLON R,BUDTOVA T. Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions[J]. Biomacromolecules,2008,9(1): 269- 277. [8] DUCHEMIN B J C,STAIGER M P,TUCKER N,et al. Aerocellulose based on all-cellulose composites [J]. Journal of Applied Polymer Science,2010,115(1): 216-221. [9] COMIN L M,TEMELLI F,SALDA?A M D A. Barley beta-glucan aerogels via supercritical CO2 drying [J]. Food Research International,2012,48(2): 442-448. [10] CHEN H B,CHIOU B S,WANG Y Z,et al. Biodegradable pectin/clay aerogels [J]. ACS Applied Materials & Interfaces,2013,5(5): 1715-1721. [11] UBEYITOGULLARI A,CIFTCI O N. Formation of nanoporous aerogels from wheat starch [J]. Carbohydrate Polymers, 2016,147: 125-132. [12] JAYAKUMAR R,PRABAHARAN M,NAIR S V,et al. Novel chitin and chitosan nanofibers in biomedical applications [J]. Biotechnology Advances,2010,28(1): 142-150. [13] CALL F. Preparation of dry clay-gels by freeze-drying [J]. Nature,1953,172(4368): 126. [14] SEETAPAN N,LIMPARYOON N,GAMONPILAS C,et al. Effect of cryogenic freezing on textural properties and microstructure of rice flour/tapioca starch blend gel [J]. Journal of Food Engineering,2015,151: 51-59. [15] NI X W,KE F,XIAO M,et al. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels[J]. International Journal of Biological Macromolecules,2016,92:1130-1135. [16] STERGAR J,MAVER U. Review of aerogel-based materials in biomedical applications [J]. Journal of Sol-Gel Science and Technology,2016,77(3): 738-752. [17] VERONOVSKI A,NOVAK Z,KNEZ ?. Synthesis and use of organic biodegradable aerogels as drug carriers [J]. Journal of Biomaterials Science, Polymer Edition,2012,23(7): 873-886. [18] VALO H,AROLA S,LAAKSONEN P,et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels [J]. European Journal of Pharmaceutical Sciences,2013,50(1): 69-77. [19] WANG D,SILBAUGH T,PFEFFER R,et al. Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels [J]. Powder Technology,2010,203(2): 298-309. [20] JIN C,HAN S,LI J,et al. Fabrication of cellulose- based aerogels from waste newspaper without any pretreatment and their use for absorbents [J]. Carbohydrate Polymers,2015,123: 150-156. [21] SALAM A, VENDITTI R A, PAWLAK J J, et al. Crosslinked hemicellulose citrate-chitosan aerogel foams [J]. Carbohydrate Polymers,2011,84(4): 1221-1229. [22] ESCUDERO R R,ROBITZER M,DI RENZO F,et al. Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule [J]. Carbohydrate Polymers,2009,75(1): 52-57. [23] NGUYEN S T, FENG J,NG S K, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2014,445: 128-134. [24] RUDAZ C,COURSON R,BONNET L,et al. Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel [J]. Biomacromolecules,2014,15(6): 2188-2195. [25] COMIN L M, TEMELLI F, SALDA?A M D A. Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2 [J]. Journal of Food Engineering,2012,111(4): 625-631. [26] SHI Z Q,GAO H C,FENG J,et al. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration [J]. Angewandte Chemie,2014,53(21): 5380-5384. [27] LU T,LI Q,CHEN W, et al. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold [J]. Composites Science and Technology,2014,94: 132-138. [28] GARC?A-GONZ?LEZ C A,ALNAIEF M,SMIRNOVA I. Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems [J]. Carbohydrate Polymers,2011,86(4): 1425-1438. [29] GARC?A-GONZ?LEZ C A,JIN M,GERTH J,et al. Polysaccharide-based aerogel microspheres for oral drug delivery [J]. Carbohydrate Polymers,2015,117:797-806. [30] MALLEPALLY R R,BERNARD I,MARIN M A,et al. Superabsorbent alginate aerogels [J]. The Journal of Supercritical Fluids,2013,79:202-208.
[1]王若冲,陈振宇,李厚燊,等.基于MXene气凝胶的微型超级电容器[J].武汉工程大学学报,2021,43(03):288.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
WANG Ruochong,CHEN Zhenyu,LI Houshen,et al.Micro-Supercapacitor Based on MXene Aerogel[J].Journal of Wuhan Institute of Technology,2021,43(05):288.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
[2]戴 萌,薛开诚,郭 立,等.还原氧化石墨烯气凝胶水蒸发诱导发电性能的研究[J].武汉工程大学学报,2023,45(06):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
DAI Meng,XUE Kaicheng,GUO Li,et al.Water Evaporation-Induced Power Generation Performance ofReduced Graphene Oxide Aerogels[J].Journal of Wuhan Institute of Technology,2023,45(05):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
[3]薛开诚,郭 立,刘银波,等.多壁碳纳米管/还原氧化石墨烯气凝胶的水蒸发性能研究[J].武汉工程大学学报,2024,46(03):267.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]
XUE Kaicheng,GUO Li,LIU Yinbo,et al.Water evaporation properties of multi-walled carbon nanotubes/reduced graphite oxide aerogel[J].Journal of Wuhan Institute of Technology,2024,46(05):267.[doi:10.19843/j.cnki.CN42-1779/TQ.202306019]