|本期目录/Table of Contents|

[1]罗海彬,宋志杰,吴锦胜,等.改性介孔分子筛Zr-MCM-41对纤维素热裂解的影响[J].武汉工程大学学报,2019,(01):40-45.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 006]
 LUO Haibin,SONG Zhijie,WU Jinsheng,et al.Effect of Modified Mesoporous Molecular Sieve Zr-MCM-41 on Pyrolysis of Cellulose[J].Journal of Wuhan Institute of Technology,2019,(01):40-45.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 006]
点击复制

改性介孔分子筛Zr-MCM-41对纤维素热裂解的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年01期
页码:
40-45
栏目:
化学与化学工程
出版日期:
2019-03-23

文章信息/Info

Title:
Effect of Modified Mesoporous Molecular Sieve Zr-MCM-41 on Pyrolysis of Cellulose
文章编号:
20190106
作者:
罗海彬1宋志杰1吴锦胜1张 波*12杨昌炎123丁一刚12
1. 武汉工程大学化工与制药学院,湖北 武汉 430205;2. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205;3. 催化材料制备及应用湖北省重点实验室(黄冈师范学院),湖北 黄冈 438000
Author(s):
LUO Haibin 1 SONG Zhijie 1 WU Jinsheng 1 ZHANG Bo*12 YANG Changyan1 2 3 DING Yigang12
1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;2. Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education, Wuhan 430205, China;3. Key Laboratory of Preparation and Application of Catalytic Materials in Hubei Province(Huanggang Normal College), Huanggang 438000, China
关键词:
纤维素Zr-MCM-41催化热裂解裂解气相色谱质谱联用糠醛
Keywords:
cellulose Zr-MCM-41 catalytic pyrolysis pyrolysis-gas chromatography-mass spectrometryfurfural
分类号:
TQ352.2
DOI:
10. 3969/j. issn. 1674?2869. 2019. 01. 006
文献标志码:
A
摘要:
采用溶胶凝胶法制备并筛选出对纤维素裂解催化效果最佳的改性介孔分子筛Zr-MCM-41。通过比表面积测定(BET)可知,Zr-MCM-41([nSi∶nZr]为100∶1、75∶1、50∶1)具有886~1157 m2/g的比表面积、3.21~4.04 nm的平均孔径、0.58~0.94 mL/g孔容。通过扫描电子显微镜-能谱(SEM-EDX)表征证实掺杂金属Zr质量分数在0.79~1.75%之间,可知其已成功负载到分子筛孔道和骨架上。将制备的介孔分子筛应用于纤维素的催化热裂解。裂解气相色谱质谱联用(Py-GC-MS)的结果表明:分子筛Zr-MCM-41在纤维素的热裂解过程中促进大分子化合物(如脱水糖)的降解,使其二次裂解反应和开环反应加剧,反应主要促进呋喃类化合物的生成,如糠醛和5-羟甲基糠醛。以糠醛作为目标产物时,[nSi∶nZr]为50的Zr-MCM-41催化效果最佳,裂解产物中糠醛含量是无催化剂条件下的12.7倍。
Abstract:
Modified mesoporous molecular sieves of Zr-MCM-41 were prepared by sol-gel method and screened in the catalytic pyrolysis of cellulose. Brunauer-Emmett-Teller (BET) characterization showed that Zr-MCM-41 (Si/Zi mole ratio of 100∶1, 75∶1, 50∶1) had a specific surface area of 886-1157 m2/g, an average pore diameter of 3.21-4.04 nm, and a pore volume of 0.58-0.94 mL/g. It was confirmed by scanning electron microscopy and energy-dispersive X-ray (SEM-EDX) characterization that Zr was successfully loaded onto the molecular sieve pores and the skeleton, and the mass fraction of the doped metal Zr was between 0.79% and 1.75%. The Zr-MCM-41 was used as the catalyst for pyrolysis of cellulose. The results of pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) show that molecular sieves of Zr-MCM-41 promote the degradation of macromolecular compounds (such as anhydrosugars), and the secondary cracking reaction and ring-opening reaction of anhydrosugars were intensified. The reactions mainly promote the formation of furan compounds such as furfural and 5-hydroxymethylfurfural. When furfural is the target product, Zr-MCM-41 with the Si/Zr mole ratio of 50 shows the best catalytic activity, and the furfural content in pyrolytic products is 12.7 times that of the catalyst-free condition.

参考文献/References:

[1] WANG S R, DAI G X, YANG H P, et al.Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science,2017,62:33-86. [2] 郭秀娟. 生物质选择性热裂解机理研究[D]. 杭州:浙江大学,2011. [3] 黄鹏,张文超,姚靖靖,等. 生物质催化裂解选择性制备化学品的研究进展[J]. 现代化工,2017, 37(6):53-57,59. [4] 刘小娟,于风文,罗瑶,等. 不同种类分子筛催化热解纤维素[J]. 化工进展,2010,29:133-136. [5] JEON M J, JEON J K, SUH D J, et al.Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS[J]. Catalysis Today,2013,204:170-178. [6] KARNJANAKOM S,SURIYA-UMPORN T,BAYU A,et al.High selectivity and stability of Mg-doped Al-MCM-41 for in-situ catalytic upgrading fast pyrolysis bio-oil[J]. Energy Conversion and Management, 2017,142:272-285. [7] 陆蔚亮. MCM-41介孔分子筛的合成及其催化性能的研究[D]. 南京:南京理工大学,2004. [8] 杨昌炎,张婷,雷攀,等. 改性介孔分子筛Zn-MCM-41对纤维素催化热解的影响[J]. 武汉工程大学学报,2014,36(3):8-14. [9] 白灿成,蒋崇文,钟馨. 硫酸改性Ti-MCM-41分子筛催化水解纤维素[J]. 纤维素科学与技术,2013,21(2):22-29. [10] 吴锦胜. 介孔碳固体酸碱的制备及对纤维素热解性能研究[D]. 武汉:武汉工程大学,2018. [11] 崔畅. 生物质催化转化羟基丙酮及其分离的研究[D]. 武汉:武汉工程大学,2016. [12] PANDYA P H,JASRA R V,NEWALKAR B L,et al.Studies on the activity and stability of immobilized α-amylase in ordered mesoporous silicas [J]. Microporous and Mesoporous Materials,2005,77(1):67-77. [13] 刘丽萍. 多点BET法计算比表面积的相对压力取值范围[J]. 中国粉体技术,2014,20(4):68-73. [14] JANG C R, VMATEI V, BORCEA A ,et al.Hydrogenation of 1-octene by Co-Mo/MCM-41 catalysts[J]. Ovidius University Annals of Chemistry,2012,23(2):133-136. [15] MEYNEN V, COOL P, VANSANT E F.Verified syntheses of mesoporous materials[J]. Microporous and Mesoporous Materials,2009,125:170-223. [16] SHEN D K, GU S.The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresour Technology,2009,100(24):6496-6504.

相似文献/References:

[1]陈树存,薛俊,李晶,等.一种简单的制备碳包覆金属Co纳米粒子的方法[J].武汉工程大学学报,2009,(03):52.
 CHEN Shu Cun,XUE Jun,LI Jing,et al.A simple and novel method of preparation carbon encapsulated Co nanoparticles[J].Journal of Wuhan Institute of Technology,2009,(01):52.
[2]柏正武,徐小琴,金芬芬,等.纤维素二氧化硅复合颗粒的制备与表征[J].武汉工程大学学报,2013,(02):11.[doi:103969/jissn16742869201302003]
 BAI Zheng wu,XU Xiao qin,JIN Fen fen,et al.Preparation and characterization of celluloseSiO2 composite beads[J].Journal of Wuhan Institute of Technology,2013,(01):11.[doi:103969/jissn16742869201302003]
[3]陈瑞,朱圣东,杨武,等.竹子化学成分的测定[J].武汉工程大学学报,2013,(02):57.[doi:103969/jissn16742869201302012]
 CHEN Rui,ZHU Sheng dong,YANG Wu,et al.Analysis of chemical components of bamboo[J].Journal of Wuhan Institute of Technology,2013,(01):57.[doi:103969/jissn16742869201302012]
[4]冯菊红,熊蕾,任小菲,等.硅基负载全氟丁基磺酰亚胺催化纤维素的水解[J].武汉工程大学学报,2014,(05):9.[doi:103969/jissn16742869201405003]
 FENG Ju hong,XIONG Lei,REN Xiao fei,et al.Silicasupported perfluorobutylsulfonyl imidecatalyzedhydrolysis of cellulose[J].Journal of Wuhan Institute of Technology,2014,(01):9.[doi:103969/jissn16742869201405003]
[5]冯建波.水中刚果红的磁性活性炭纤维素微球法脱除[J].武汉工程大学学报,2014,(10):17.[doi:103969/jissn167428692014010004]
 FENG Jian bo.Removal of Congo red in water by magnetic activated carbon/cellulose microspheres[J].Journal of Wuhan Institute of Technology,2014,(01):17.[doi:103969/jissn167428692014010004]
[6]赵 鑫,曹光辉,刘肖月,等.纤维素-碱木质素水凝胶的制备及其性能表征[J].武汉工程大学学报,2019,(04):366.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 012]
 ZHAO Xin,CAO Guanghui,LIU Xiaoyue,et al.Preparation and Characterization of Cellulose-Alkali Lignin Hydrogel[J].Journal of Wuhan Institute of Technology,2019,(01):366.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 012]
[7]吴锦胜,杨昌炎,王 伟,等.介孔碳负载金属催化剂对纤维素热裂解反应的影响[J].武汉工程大学学报,2020,42(03):264.[doi:10.19843/j.cnki.CN42-1779/TQ. 201907001]
 WU Jinsheng,YANG Changyan,WANG Wei,et al.Effect of Mesoporous Carbon Supported Metal Catalysts on Cellulose Pyrolysis[J].Journal of Wuhan Institute of Technology,2020,42(01):264.[doi:10.19843/j.cnki.CN42-1779/TQ. 201907001]
[8]张 珊,徐小琴,郝菊芳,等.纤维素和直链淀粉衍生物双选择体手性固定相的分离特性研究[J].武汉工程大学学报,2020,42(04):371.[doi:10.19843/j.cnki.CN42-1779/TQ.201911026]
 ZHANG Shan,XU Xiaoqin,HAO Jufang,et al.Enantioseparation Property of Biselector Chiral Stationary Phase Derived from Cellulose and Amylose Derivatives[J].Journal of Wuhan Institute of Technology,2020,42(01):371.[doi:10.19843/j.cnki.CN42-1779/TQ.201911026]
[9]邓 杭,沈喜洲,沈 陟*.纤维素基吸附剂对重金属离子吸附的研究进展[J].武汉工程大学学报,2020,42(04):377.[doi:10.19843/j.cnki.CN42-1779/TQ.201910020]
 DENG Hang,SHEN Xizhou,SHEN Zhi *.Research Progress in Cellulose-Based Adsorbents for Heavy Metal Ions[J].Journal of Wuhan Institute of Technology,2020,42(01):377.[doi:10.19843/j.cnki.CN42-1779/TQ.201910020]

备注/Memo

备注/Memo:
收稿日期:2018-07-29基金项目:武汉工程大学校长基金(20170602)作者简介:罗海彬,本科生。E-mail: [email protected]*通讯作者:张 波,博士,教授。[email protected]引文格式:罗海彬,宋志杰,吴锦胜,等. 改性介孔分子筛Zr-MCM-41对纤维素热裂解的影响[J]. 武汉工程大学学报,2019,41(1):40-45.
更新日期/Last Update: 2019-02-18