[1] LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266):529-531.[2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.[3] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors? [J]. Chemical Reviews, 2005, 105(3):1021-1021.[4] LIU H W, LIU H F,HAN X Y. Core-shell CeO2 micro/nanospheres prepared by microwave-assisted solvothermal process as high-stability anodes for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2017,21(1): 291-295.[5] YU S Y, YANG N J, ZHANG H, et al. Electrochemical supercapacitors from diamond[J]. Journal of Physical Chemistry C, 2015, 119(33): 18918-18926.[6] YU J, ZHANG Y Y, LI H, et al. Electrochemical properties and sensing applications of nanocarbons: a comparative study[J]. Carbon, 2018 ,129: 301-309.[7] QIU Z P, YU J, YAN P, et al. Electrochemical grafting of graphene nano platelets with aryl diazonium salts[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28291-28298.[8] SU D D, ZHANG Y Y, WANG Z J, et al. Decoration of graphene nano platelets with gold nanoparticles for voltammetry of 4-nonylphenol[J]. Carbon, 2017, 117: 313-321.[9] WANG D, WANG J, LIU Z E, et al. High-performance electrochemical catalysts based on three-dimensional porous architecture with conductive interconnected networks[J]. ACS Applied Materials & Interfaces, 2016, 8(42):28265-28273.[10] LIU Y, QIU Z P, WAN Q J, et al. High- performance hydrazine sensor based on graphene nano platelets supported metal nanoparticles[J]. Electroanalysis, 2016, 28(1):126-132.[11] BU Y F, NAM G, KIM S, et al. A tailored bifunctional electrocatalyst: boosting oxygen reduction/evolution catalysis via electron transfer between N-Doped graphene and perovskite oxides[J]. Small, 2018, 14(48): 1802767.[12] LIAO H L, QIU Z P, WAN Q J, et al. Universal electrode interface for electrocatalytic oxidation of liquid fuels[J]. ACS Applied Materials & Interfaces, 2014, 6(20):18055-18062.[13] LI H, ZHANG Y Y, WAN Q J, et al. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels[J]. Carbon, 2018,131:111-119.[14] ZHANG Z Y, XIAO F, QIAN L H, et al. Facile synthesis of 3D MnO2-graphene and carbon nanotube- graphene composite networks for high-performance,flexible, all-solid-state asymmetric supercapacitors[J]. Advanced Energy Materials, 2014, 4(10): 1400064.[15] XIAO X, LI T Q, PENG Z H, et al. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors[J]. Nano Energy, 2014,6: 1-9.[16] HONG M S, LEE S H, KIM S W. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor[J]. Electrochemical and Solid-State Letters, 2002, 5(10): A227-A230.[17] KHOMENKO V, RAYMUNDO-PINERO E, B?GUIN F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium[J]. Journal of Power Sources, 2006, 153(1): 183-190.[18] PENG S, LI L, WU H B, et al. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors[J]. Advanced Energy Materials, 2015, 5(2): 1401172.[19] DAI C S, CHIEN P Y, LIN J Y , et al. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 12168-12174.[20] XIONG W, GAO Y S, WU X, et al. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor[J]. ACS Applied Materials & interfaces, 2014, 6(21): 19416-19423.[21] XU Y X, LIN Z Y, ZHONG X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014(5): 4554.[22] LIN Y, WATSON K A, KIM J W, et al. Bulk preparation of holey graphene via controlled catalytic oxidation[J]. Nanoscale, 2013, 5(17): 7814-7824.[23] ZHANG W L, LIN N, LIU D B, et al. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications[J]. Energy, 2017, 128:618-625.[24] QU D Y, SHI H. Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources, 1998, 74(1):99-107.[25] WANG D W, LI F, LIU M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie, 2008, 47(2):373-376.[26] BOUKHALFA S, GORDON D, HE L, et al.?In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors[J]. ACS Nano, 2014, 8(3):2495-2503.[27] CHEN Y, ZHANG X, YU P, et al. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors[J]. Journal of Power Sources, 2010, 195(9): 3031-3035.[28] XU Z W, LI Z, HOLT C M B, et al. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density[J]. The Journal of Physical Chemistry Letters, 2012, 3(20): 2928-2933.[29] YOU B, WANG L L, YAO L, et al. Threedimensional N-doped graphene-CNT networks for supercapacitor[J]. Chemical Communications, 2013, 49(44): 5016-5018.[30] LEE S H, KIM H W, HWANG J O, et al. Three- dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films[J]. Angewandte Chemie,2010, 122(52): 10282- 10286.[31] CHEN C M,ZHANG Q,HUANG C H,et al. Macroporous ’bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors[J]. Chemical Communications, 2012, 48(57): 7149- 7151.[32] ZHANG X, ZHANG H T, LI C, et al. Recent advances in porous graphene materials for supercapacitor applications[J]. Rsc Advances,2014,4(86): 45862- 45884.[33] SALUNKHE R R, TANG J, KOBAYASHI N, et al. Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal-organic framework-derived nanoporous carbon and a conducting polymer[J]. Chemical Science, 2016, 7(9): 7504-7523.
[1]万其进*,廖华玲,刘义,等.石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J].武汉工程大学学报,2013,(02):16.[doi:103969/jissn16742869201302004]
WAN Qi jin,LIAO Hua ling,LIU Yi,et al.Simultaneous determination of catechol and hydroquinone?in graphene modified electrode[J].Journal of Wuhan Institute of Technology,2013,(02):16.[doi:103969/jissn16742869201302004]
[2]李亮,朱寒冰,喻丹,等.甲基橙掺杂聚吡咯氧化石墨烯复合材料[J].武汉工程大学学报,2013,(05):43.[doi:103969/jissn16742869201305009]
LI Liang,ZHU Han bing,YU Dan,et al.Composites of polypyrrole/graphene oxide doped by methyl orange[J].Journal of Wuhan Institute of Technology,2013,(02):43.[doi:103969/jissn16742869201305009]
[3]李亮,胡军,班兴明,等.石墨烯的制备及表征[J].武汉工程大学学报,2014,(08):46.[doi:103969/jissn16742869201408008]
LI Liang,HU Jun,BAN Xing ming,et al.Preparation and characterization of graphene[J].Journal of Wuhan Institute of Technology,2014,(02):46.[doi:103969/jissn16742869201408008]
[4]杨 文,陆 慧,张 芳,等.甲基橙修饰石墨烯的制备及电容性能[J].武汉工程大学学报,2015,37(05):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
,,et al.Preparation and capacitive properties of methyl orange modified graphene[J].Journal of Wuhan Institute of Technology,2015,37(02):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
[5]彭林峰,汪 洋,柳景亚,等.氢氧化铜/石墨烯复合材料的制备与表征[J].武汉工程大学学报,2015,37(08):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
,,et al.Preparation and characterization of copper hydroxide/graphene composite[J].Journal of Wuhan Institute of Technology,2015,37(02):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
[6]张阐娟,文小玲*,李康康,等.超级电容器恒压充电的控制策略研究[J].武汉工程大学学报,2016,38(1):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
ZHANG Chanjuan,WEN Xiaoling*,LI Kangkang,et al.Constant Voltage Control Scheme of Super Capacitor Charging[J].Journal of Wuhan Institute of Technology,2016,38(02):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
[7]张子俊,李 慧,张媛媛,等.基于纳米钯/石墨烯增敏效应对双酚A的电化学检测[J].武汉工程大学学报,2017,39(01):5.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]
ZHANG Zijun,LI Hui,ZHANG Yuanyuan,et al.Bisphenol A Based on Enhancement Effect of Palladium Nanoparticle/Graphene[J].Journal of Wuhan Institute of Technology,2017,39(02):5.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]
[8]吴生丽,刘 忆,孙艳娟,等.功能化石墨烯四溴双酚A的电化学传感研究[J].武汉工程大学学报,2017,39(05):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
WU Shengli,LIU Yi,SUN Yanjuan,et al.An Electrochemical Sensor for Tetrabromobisphenol A Determination Based on Functionalized Graphene[J].Journal of Wuhan Institute of Technology,2017,39(02):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
[9]李 亮,陈 浩,邱唯楚,等.水热法制备聚苯胺/石墨烯复合材料的研究[J].武汉工程大学学报,2019,(01):55.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 008]
LI Liang,CHEN Hao,QIU Weichu,et al.Hydrothermal Preparation of Polyaniline/Graphene Composites[J].Journal of Wuhan Institute of Technology,2019,(02):55.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 008]
[10]周 含,王浩楠,罗晓锋,等.碳包覆二氧化锰/石墨烯复合凝胶的制备与性能[J].武汉工程大学学报,2019,(02):131.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 006]
ZHOU Han,WANG Haonan,LUO Xiaofeng,et al.Preparation and Performances of Carbon-Coated Manganese Oxide/Graphene Composite Hydrogel[J].Journal of Wuhan Institute of Technology,2019,(02):131.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 006]
[11]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(02):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[12]朱珍妮,熊惠之,喻湘华,等.氮掺杂石墨烯/聚苯胺复合凝胶的制备与性能[J].武汉工程大学学报,2017,39(05):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
ZHU Zhenni,XIONG Huizhi,YU Xianghua,et al. Preparation of Nitrogen-Doped Graphene/Polyaniline Composite Hydrogels and Their Performance[J].Journal of Wuhan Institute of Technology,2017,39(02):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
[13]李 阳,邱唯楚,蔡 卓,等.聚吡咯/石墨烯复合水凝胶的制备与性能[J].武汉工程大学学报,2018,40(05):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
LI Yang,QIU Weichu,CAI Zhuo,et al.Preparation and Properties of Polypyrrole/Graphene Compoiste Hydrogels[J].Journal of Wuhan Institute of Technology,2018,40(02):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]