|本期目录/Table of Contents|

[1]郭 畅,郑葛花,张媛媛,等.多孔石墨烯的制备及其在超级电容器中的应用[J].武汉工程大学学报,2019,(02):103-108.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]
 GUO Chang,ZHENG Gehua,ZHANG Yuanyuan,et al.Fabrication of Holey Graphene and Its Application in Supercapacitors[J].Journal of Wuhan Institute of Technology,2019,(02):103-108.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 001]
点击复制

多孔石墨烯的制备及其在超级电容器中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年02期
页码:
103-108
栏目:
化学与化学工程
出版日期:
2019-04-18

文章信息/Info

Title:
Fabrication of Holey Graphene and Its Application in Supercapacitors
文章编号:
20190201
作者:
郭 畅郑葛花张媛媛曾 婷*万其进*
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
GUO Chang ZHENG Gehua ZHANG Yuanyuan ZENG Ting* WAN Qijin*
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
石墨烯超级电容器多孔材料双电层电容器
Keywords:
graphene supercapacitors holey materials electrical-double-layer capacitor
分类号:
O69
DOI:
10. 3969/j. issn. 1674?2869. 2019. 02. 001
文献标志码:
A
摘要:
采用催化刻蚀法,制备出作为一种大比表面积、高导电性的、已被广泛用作超级电容器的二维碳电极材料。石墨烯的多孔材料由于其多孔结构能够加快离子的扩散,使得比电容进一步增加,增强了其双电层电容性能。多孔还原氧化石墨烯(hrGO),并将其用作超级电容器的电极材料。同时利用透射电子显微镜、X射线电子能谱和电化学技术对制备出的hrGO进行表征。利用循环伏安法和恒电流充放电技术对比了未刻蚀孔的还原氧化石墨烯(rGO)和hrGO的超级电容性能。当电位在-1~0 V范围内时,hrGO的比电容要大于未刻蚀的rGO的比电容,当扫速为10 mV/s时,其比电容可达到33 mF/cm2;当电流密度为0.2 mA/cm2时,hrGO的比电容仍要大于未刻蚀的rGO的比电容,与循环伏安测试中得到的结论一致。在充放电达到3 000次循环后,比电容保持在初始值的87%。上述结果表明该方法制备的多孔石墨烯具有良好的超级电容性能,适用于超级电容器负极材料。
Abstract:
Graphene, a two-dimensional carbon material with large specific surface and high conductivity, has been widely used as electrode material in application of supercapacitors. The porous-feature of graphene-based materials can provide a high-speed ionic diffusion, with a result of the improved specific capacity and property of electrical-double-layer capacity. In this work, the holey reduced graphene oxide (hrGO) were prepared by the catalytic etching method, and served as the electrode in supercapacitors. The synthesized hrGO was characterized by transmission electron microscopy, energy dispersive X-Ray spectroscopy and electrochemical techniques, and the specific capacitances of reduced graphene oxide (rGO) and hrGO were measured by cyclic voltammetry (CV) and the galvanostatic charge-discharge technique (GCD). The specific capacitance of hrGO is 33 mF/cm2 in the potential range of -1- 0 V, at a scan rate of 10 mV/s, higher than that of rGO. In GCD studies, hrGO shows a better-defined electrical-double-layer behavior than rGO without etching at the current density of 0.2 mA/cm2. The results are consistent with CV results. Then after 3 000 charge-discharge cycles, hrGO still maintains 87% of its initial capacitance. Therefore, the hrGO with excellent supercapacitor performances is expected to be applied as a negative electrode material of supercapacitors.

参考文献/References:

[1] LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266):529-531.[2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.[3] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors? [J]. Chemical Reviews, 2005, 105(3):1021-1021.[4] LIU H W, LIU H F,HAN X Y. Core-shell CeO2 micro/nanospheres prepared by microwave-assisted solvothermal process as high-stability anodes for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2017,21(1): 291-295.[5] YU S Y, YANG N J, ZHANG H, et al. Electrochemical supercapacitors from diamond[J]. Journal of Physical Chemistry C, 2015, 119(33): 18918-18926.[6] YU J, ZHANG Y Y, LI H, et al. Electrochemical properties and sensing applications of nanocarbons: a comparative study[J]. Carbon, 2018 ,129: 301-309.[7] QIU Z P, YU J, YAN P, et al. Electrochemical grafting of graphene nano platelets with aryl diazonium salts[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28291-28298.[8] SU D D, ZHANG Y Y, WANG Z J, et al. Decoration of graphene nano platelets with gold nanoparticles for voltammetry of 4-nonylphenol[J]. Carbon, 2017, 117: 313-321.[9] WANG D, WANG J, LIU Z E, et al. High-performance electrochemical catalysts based on three-dimensional porous architecture with conductive interconnected networks[J]. ACS Applied Materials & Interfaces, 2016, 8(42):28265-28273.[10] LIU Y, QIU Z P, WAN Q J, et al. High- performance hydrazine sensor based on graphene nano platelets supported metal nanoparticles[J]. Electroanalysis, 2016, 28(1):126-132.[11] BU Y F, NAM G, KIM S, et al. A tailored bifunctional electrocatalyst: boosting oxygen reduction/evolution catalysis via electron transfer between N-Doped graphene and perovskite oxides[J]. Small, 2018, 14(48): 1802767.[12] LIAO H L, QIU Z P, WAN Q J, et al. Universal electrode interface for electrocatalytic oxidation of liquid fuels[J]. ACS Applied Materials & Interfaces, 2014, 6(20):18055-18062.[13] LI H, ZHANG Y Y, WAN Q J, et al. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels[J]. Carbon, 2018,131:111-119.[14] ZHANG Z Y, XIAO F, QIAN L H, et al. Facile synthesis of 3D MnO2-graphene and carbon nanotube- graphene composite networks for high-performance,flexible, all-solid-state asymmetric supercapacitors[J]. Advanced Energy Materials, 2014, 4(10): 1400064.[15] XIAO X, LI T Q, PENG Z H, et al. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors[J]. Nano Energy, 2014,6: 1-9.[16] HONG M S, LEE S H, KIM S W. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor[J]. Electrochemical and Solid-State Letters, 2002, 5(10): A227-A230.[17] KHOMENKO V, RAYMUNDO-PINERO E, B?GUIN F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium[J]. Journal of Power Sources, 2006, 153(1): 183-190.[18] PENG S, LI L, WU H B, et al. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors[J]. Advanced Energy Materials, 2015, 5(2): 1401172.[19] DAI C S, CHIEN P Y, LIN J Y , et al. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(22): 12168-12174.[20] XIONG W, GAO Y S, WU X, et al. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor[J]. ACS Applied Materials & interfaces, 2014, 6(21): 19416-19423.[21] XU Y X, LIN Z Y, ZHONG X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014(5): 4554.[22] LIN Y, WATSON K A, KIM J W, et al. Bulk preparation of holey graphene via controlled catalytic oxidation[J]. Nanoscale, 2013, 5(17): 7814-7824.[23] ZHANG W L, LIN N, LIU D B, et al. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications[J]. Energy, 2017, 128:618-625.[24] QU D Y, SHI H. Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources, 1998, 74(1):99-107.[25] WANG D W, LI F, LIU M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie, 2008, 47(2):373-376.[26] BOUKHALFA S, GORDON D, HE L, et al.?In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors[J]. ACS Nano, 2014, 8(3):2495-2503.[27] CHEN Y, ZHANG X, YU P, et al. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors[J]. Journal of Power Sources, 2010, 195(9): 3031-3035.[28] XU Z W, LI Z, HOLT C M B, et al. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density[J]. The Journal of Physical Chemistry Letters, 2012, 3(20): 2928-2933.[29] YOU B, WANG L L, YAO L, et al. Threedimensional N-doped graphene-CNT networks for supercapacitor[J]. Chemical Communications, 2013, 49(44): 5016-5018.[30] LEE S H, KIM H W, HWANG J O, et al. Three- dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films[J]. Angewandte Chemie,2010, 122(52): 10282- 10286.[31] CHEN C M,ZHANG Q,HUANG C H,et al. Macroporous ’bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors[J]. Chemical Communications, 2012, 48(57): 7149- 7151.[32] ZHANG X, ZHANG H T, LI C, et al. Recent advances in porous graphene materials for supercapacitor applications[J]. Rsc Advances,2014,4(86): 45862- 45884.[33] SALUNKHE R R, TANG J, KOBAYASHI N, et al. Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal-organic framework-derived nanoporous carbon and a conducting polymer[J]. Chemical Science, 2016, 7(9): 7504-7523.

相似文献/References:

[1]万其进*,廖华玲,刘义,等.石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J].武汉工程大学学报,2013,(02):16.[doi:103969/jissn16742869201302004]
 WAN Qi jin,LIAO Hua ling,LIU Yi,et al.Simultaneous determination of catechol and hydroquinone?in graphene modified electrode[J].Journal of Wuhan Institute of Technology,2013,(02):16.[doi:103969/jissn16742869201302004]
[2]李亮,朱寒冰,喻丹,等.甲基橙掺杂聚吡咯氧化石墨烯复合材料[J].武汉工程大学学报,2013,(05):43.[doi:103969/jissn16742869201305009]
 LI Liang,ZHU Han bing,YU Dan,et al.Composites of polypyrrole/graphene oxide doped by methyl orange[J].Journal of Wuhan Institute of Technology,2013,(02):43.[doi:103969/jissn16742869201305009]
[3]李亮,胡军,班兴明,等.石墨烯的制备及表征[J].武汉工程大学学报,2014,(08):46.[doi:103969/jissn16742869201408008]
 LI Liang,HU Jun,BAN Xing ming,et al.Preparation and characterization of graphene[J].Journal of Wuhan Institute of Technology,2014,(02):46.[doi:103969/jissn16742869201408008]
[4]杨 文,陆 慧,张 芳,等.甲基橙修饰石墨烯的制备及电容性能[J].武汉工程大学学报,2015,37(05):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
 ,,et al.Preparation and capacitive properties of methyl orange modified graphene[J].Journal of Wuhan Institute of Technology,2015,37(02):51.[doi:10. 3969/j. issn. 1674-2869. 2015. 05. 010]
[5]彭林峰,汪 洋,柳景亚,等.氢氧化铜/石墨烯复合材料的制备与表征[J].武汉工程大学学报,2015,37(08):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
 ,,et al.Preparation and characterization of copper hydroxide/graphene composite[J].Journal of Wuhan Institute of Technology,2015,37(02):41.[doi:10. 3969/j. issn. 1674-2869. 2015. 08. 008]
[6]张阐娟,文小玲*,李康康,等.超级电容器恒压充电的控制策略研究[J].武汉工程大学学报,2016,38(1):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
 ZHANG Chanjuan,WEN Xiaoling*,LI Kangkang,et al.Constant Voltage Control Scheme of Super Capacitor Charging[J].Journal of Wuhan Institute of Technology,2016,38(02):82.[doi:10. 3969/j. issn. 1674-2869. 2016. 01. 015]
[7]张子俊,李 慧,张媛媛,等.基于纳米钯/石墨烯增敏效应对双酚A的电化学检测[J].武汉工程大学学报,2017,39(01):5.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]
 ZHANG Zijun,LI Hui,ZHANG Yuanyuan,et al.Bisphenol A Based on Enhancement Effect of Palladium Nanoparticle/Graphene[J].Journal of Wuhan Institute of Technology,2017,39(02):5.[doi:10. 3969/j. issn. 1674?2869. 2017. 01. 002]
[8]吴生丽,刘 忆,孙艳娟,等.功能化石墨烯四溴双酚A的电化学传感研究[J].武汉工程大学学报,2017,39(05):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
 WU Shengli,LIU Yi,SUN Yanjuan,et al.An Electrochemical Sensor for Tetrabromobisphenol A Determination Based on Functionalized Graphene[J].Journal of Wuhan Institute of Technology,2017,39(02):432.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 005]
[9]李 亮,陈 浩,邱唯楚,等.水热法制备聚苯胺/石墨烯复合材料的研究[J].武汉工程大学学报,2019,(01):55.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 008]
 LI Liang,CHEN Hao,QIU Weichu,et al.Hydrothermal Preparation of Polyaniline/Graphene Composites[J].Journal of Wuhan Institute of Technology,2019,(02):55.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 008]
[10]周 含,王浩楠,罗晓锋,等.碳包覆二氧化锰/石墨烯复合凝胶的制备与性能[J].武汉工程大学学报,2019,(02):131.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 006]
 ZHOU Han,WANG Haonan,LUO Xiaofeng,et al.Preparation and Performances of Carbon-Coated Manganese Oxide/Graphene Composite Hydrogel[J].Journal of Wuhan Institute of Technology,2019,(02):131.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 006]
[11]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
 ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(02):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[12]朱珍妮,熊惠之,喻湘华,等.氮掺杂石墨烯/聚苯胺复合凝胶的制备与性能[J].武汉工程大学学报,2017,39(05):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
 ZHU Zhenni,XIONG Huizhi,YU Xianghua,et al. Preparation of Nitrogen-Doped Graphene/Polyaniline Composite Hydrogels and Their Performance[J].Journal of Wuhan Institute of Technology,2017,39(02):455.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 009]
[13]李 阳,邱唯楚,蔡 卓,等.聚吡咯/石墨烯复合水凝胶的制备与性能[J].武汉工程大学学报,2018,40(05):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]
 LI Yang,QIU Weichu,CAI Zhuo,et al.Preparation and Properties of Polypyrrole/Graphene Compoiste Hydrogels[J].Journal of Wuhan Institute of Technology,2018,40(02):530.[doi:10. 3969/j. issn. 1674-2869. 2018. 05. 010]

备注/Memo

备注/Memo:
收稿日期:2019-01-05基金项目:国家自然科学基金(61701352)作者简介:郭 畅,硕士研究生。E-mail:[email protected]*通讯作者:万其进,教授,博士研究生导师。E-mail:[email protected];曾 婷,博士,讲师。E-mail:[email protected]引文格式:郭畅,郑葛花,张媛媛,等. 多孔石墨烯的制备及其在超级电容器中的应用[J]. 武汉工程大学学报,2019,41(2):103-108.
更新日期/Last Update: 2019-04-20