|本期目录/Table of Contents|

[1]王振博,徐佳伟,汪 锋*.三苯胺基有机微孔聚合物的合成与气体吸附[J].武汉工程大学学报,2019,(05):409-414.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 001]
 WANG Zhenbo,XU Jiawei,WANG Feng*.Synthesis and Gas Adsorption Properties of Triphenylamine-Containing Microporous Organic Polymers[J].Journal of Wuhan Institute of Technology,2019,(05):409-414.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 001]
点击复制

三苯胺基有机微孔聚合物的合成与气体吸附(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年05期
页码:
409-414
栏目:
化学与化学工程
出版日期:
2021-01-24

文章信息/Info

Title:
Synthesis and Gas Adsorption Properties of Triphenylamine-Containing Microporous Organic Polymers
文章编号:
20190501
作者:
王振博徐佳伟汪 锋*
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
WANG ZhenboXU JiaweiWANG Feng*
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205, China
关键词:
三苯胺有机微孔聚合物Sonogashira-Hagihara偶联反应吸附分离
Keywords:
triphenylamine microporous organic polymers(MOPs) Sonogashira-Hagihara reaction adsorption sequestration
分类号:
TQ028
DOI:
10. 3969/j. issn. 1674?2869. 2019. 05. 001
文献标志码:
A
摘要:
以三苯胺(TPA)为基本构筑单元,分别选用三(4-乙炔基)苯胺(TEPA)和苯基三(4-乙炔基苯基)硅烷(TEPP)为共聚单体,通过Sonogashira-Hagihara反应合成2种有机微孔聚合物(MOPs)材料。采用傅里叶变换红外光谱、热失重分析仪、粉末X射线衍射、扫描电子显微镜对聚合物的结构和形貌进行表征。氮气吸附结果表明:聚合物TEPA-TPA和TEPP-TPA的BET比表面积分别为992 m2·g-1和428 m2·g-1。由于聚合物骨架中含有TPA富氮基团,在273 K和113 kPa条件下TEPA-TPA表现出较好的CO2吸附能力(2.46 mmol·g-1)以及适中的CO2/N2的选择性吸附系数(52)。这类MOPs材料具有优良的稳定性、高的比表面积和良好的CO2吸附性能,因此将在气体吸附与分离方面具有潜在的应用前景。
Abstract:
Microporous organic polymers (MOPs) derived from triphenylamine(TPA) and triethynyl monomers such as tris(4-ethynylphenyl)amine(TEPA) and tris(4-ethynylphenyl)phenylsilane(TEPP) were synthesized via Sonogashira-Hagihara reaction. The molecular structures and morphology of the resulting MOPs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction and scanning electron microscopy. The results of nitrogen adsorption indicate that Brunauer- Emmett-Teller (BET) surface areas of TEPA-TPA and TEPP-TPA reach 992 m2·g-1 and 428 m2·g-1, respectively. The incorporation of triphenylamine moieties into the polymer skeleton increases the number of electrons donating basic nitrogen sites in the porous frameworks. Thus, the triphenylamine-based polymer TEPA-TPA with higher surface area shows better CO2 uptake capacity of 2.46 mmol·g-1 and moderate CO2/N2 selectivity around 52 at 273 K and 113 kPa. Given the excellent thermal and chemical stability, high BET surface area, and impressive CO2 adsorption performances, these MOPs are promising candidates for potential applications in CO2 capture and sequestration.

参考文献/References:

[1] CHEN X B,LI C,GRATZEL M,et al. Nanomaterials for renewable energy production and storage[J]. Chemical Society Reviews,2012,41(23): 7909-7937. [2] EMERSON A J, CHAHINE A, BATTEN S R, et al. Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption[J]. Coordination Chemistry Reviews,2018,365: 1-22. [3] 赵唯君,张华丽,严春杰,等. 乙醇胺和N,N-二甲基乙醇胺改性埃洛石对CO2的吸附行为[J]. 武汉工程大学学报,2017,39(5): 420-426. [4] ZOU L F, SUN Y J, CHE S, et al. Porous organic polymers for post-combustion carbon capture[J]. Advanced Materials,2017,29(37): 1700229(1)- 1700229(35). [5] KUPGAN G,ABBOTT L J,HART K E,et al. Modeling amorphous microporous polymers for CO2 capture and separations[J]. Chemical Reviews,2018,118(11): 5488-5538. [6] 杨娟,金尚彬,谭必恩. 编织超交联微孔聚合物的研究进展[J]. 高分子通报,2018(6):9-20. [7] LIU M Y,GUO L P,JIN S B,et al. Covalent triazine frameworks: synthesis and applications[J]. Journal of Materials Chemistry A,2019,7(10): 5153-5172. [8] DING M L, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews,2019,48(10): 2783-2828. [9] BHANJA P,MODAK A,BAUMIK A. Porous organic polymers for CO2 storage and conversion reactions[J]. ChemCatChem,2019,11(1): 244-257. [10] YEN H J, LIOU G S. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications[J]. Progress in Polymer Science,2019,89: 250-287. [11] JIANG J X,TREWIN A,SU F B,et al. Microporous poly (tri (4-ethynylphenyl) amine) networks: synthesis,properties,and atomistic simulation[J]. Macromolecules,2009,42(7): 2658-2666. [12] YANG Y Q,ZHANG Q,ZHANG S B,et al. Synthesis and characterization of triphenylamine-containing microporous organic copolymers for carbon dioxide uptake[J]. Polymer,2013,54(21): 5698-5702. [13] LIAO Y Z, WEBER J, FAUL C F J. Conjugated microporous polytriphenylamine networks[J]. Chemical Communications,2014,50(59): 8002- 8005. [14] ZHANG D,TAO L M,WANG Q H,et al. A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers[J]. Polymer,2016,82: 114-120. [15] LI L N,REN H,YUAN Y,et al. Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization[J]. Journal of Materials Chemistry A,2014,2(29): 11091-11098. [16] XU J W,ZHANG C,QIU Z X,et al. Synthesis and characterization of functional triphenylphosphine- containing microporous organic polymers for gas storage and separation[J]. Macromolecular Chemistry and Physics,2017,218(22): 1700275(1)-1700275(8). [17] QIN L, XU G, YAO C, et al. Thiophene-based conjugated microporous polymers: preparation,porosity,exceptional carbon dioxide absorption and selectivity[J]. Polymer Chemistry,2016,7(28): 4599-4602. [18] YANG Y Q,CHUAH C Y,GONG H Q,et al. Robust microporous organic copolymers containing triphenylamine for high pressure CO2 capture application[J]. Journal of CO2 Utilization,2017,19: 214-220. [19] YAO C,CUI D,ZHU Y,et al. Synthetic control of the polar units in poly(thiophene carbazole) porous networks for effective CO2 capture[J]. New Journal of Chemistry,2019,43(18): 6838-6842. [20] RONG M,YANG L R,WANG L,et al. Fabrication of ultramicroporous triphenylamine-based polyaminal networks for low-pressure carbon dioxide capture[J]. Journal of Colloid and Interface Science,2019,548: 265-274. [21] ZHANG H J, ZHANG C, WANG X C, et al. Microporous organic polymers based on tetraethynyl building blocks with N-functionalized pore surfaces: synthesis,porosity and carbon dioxide sorption[J]. RSC Advances,2016,6(115): 113826-113833. [22] LI G Y,QIN L,YAO C,et al. Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications[J]. Scientific Reports,2017,7(1): 15394(1)-15394(9).

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-07-02基金项目:湖北省教育厅重点项目(D20181505)作者简介:王振博,硕士研究生。E-mail: [email protected]*通讯作者:汪 锋,博士,教授。E-mail:[email protected]引文格式:王振博,徐佳伟,汪锋. 三苯胺基有机微孔聚合物的合成与气体吸附[J]. 武汉工程大学学报,2019,41(5):409-414.
更新日期/Last Update: 2019-10-29