[1] CHEN X B,LI C,GRATZEL M,et al. Nanomaterials for renewable energy production and storage[J]. Chemical Society Reviews,2012,41(23): 7909-7937. [2] EMERSON A J, CHAHINE A, BATTEN S R, et al. Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption[J]. Coordination Chemistry Reviews,2018,365: 1-22. [3] 赵唯君,张华丽,严春杰,等. 乙醇胺和N,N-二甲基乙醇胺改性埃洛石对CO2的吸附行为[J]. 武汉工程大学学报,2017,39(5): 420-426. [4] ZOU L F, SUN Y J, CHE S, et al. Porous organic polymers for post-combustion carbon capture[J]. Advanced Materials,2017,29(37): 1700229(1)- 1700229(35). [5] KUPGAN G,ABBOTT L J,HART K E,et al. Modeling amorphous microporous polymers for CO2 capture and separations[J]. Chemical Reviews,2018,118(11): 5488-5538. [6] 杨娟,金尚彬,谭必恩. 编织超交联微孔聚合物的研究进展[J]. 高分子通报,2018(6):9-20. [7] LIU M Y,GUO L P,JIN S B,et al. Covalent triazine frameworks: synthesis and applications[J]. Journal of Materials Chemistry A,2019,7(10): 5153-5172. [8] DING M L, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews,2019,48(10): 2783-2828. [9] BHANJA P,MODAK A,BAUMIK A. Porous organic polymers for CO2 storage and conversion reactions[J]. ChemCatChem,2019,11(1): 244-257. [10] YEN H J, LIOU G S. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications[J]. Progress in Polymer Science,2019,89: 250-287. [11] JIANG J X,TREWIN A,SU F B,et al. Microporous poly (tri (4-ethynylphenyl) amine) networks: synthesis,properties,and atomistic simulation[J]. Macromolecules,2009,42(7): 2658-2666. [12] YANG Y Q,ZHANG Q,ZHANG S B,et al. Synthesis and characterization of triphenylamine-containing microporous organic copolymers for carbon dioxide uptake[J]. Polymer,2013,54(21): 5698-5702. [13] LIAO Y Z, WEBER J, FAUL C F J. Conjugated microporous polytriphenylamine networks[J]. Chemical Communications,2014,50(59): 8002- 8005. [14] ZHANG D,TAO L M,WANG Q H,et al. A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers[J]. Polymer,2016,82: 114-120. [15] LI L N,REN H,YUAN Y,et al. Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization[J]. Journal of Materials Chemistry A,2014,2(29): 11091-11098. [16] XU J W,ZHANG C,QIU Z X,et al. Synthesis and characterization of functional triphenylphosphine- containing microporous organic polymers for gas storage and separation[J]. Macromolecular Chemistry and Physics,2017,218(22): 1700275(1)-1700275(8). [17] QIN L, XU G, YAO C, et al. Thiophene-based conjugated microporous polymers: preparation,porosity,exceptional carbon dioxide absorption and selectivity[J]. Polymer Chemistry,2016,7(28): 4599-4602. [18] YANG Y Q,CHUAH C Y,GONG H Q,et al. Robust microporous organic copolymers containing triphenylamine for high pressure CO2 capture application[J]. Journal of CO2 Utilization,2017,19: 214-220. [19] YAO C,CUI D,ZHU Y,et al. Synthetic control of the polar units in poly(thiophene carbazole) porous networks for effective CO2 capture[J]. New Journal of Chemistry,2019,43(18): 6838-6842. [20] RONG M,YANG L R,WANG L,et al. Fabrication of ultramicroporous triphenylamine-based polyaminal networks for low-pressure carbon dioxide capture[J]. Journal of Colloid and Interface Science,2019,548: 265-274. [21] ZHANG H J, ZHANG C, WANG X C, et al. Microporous organic polymers based on tetraethynyl building blocks with N-functionalized pore surfaces: synthesis,porosity and carbon dioxide sorption[J]. RSC Advances,2016,6(115): 113826-113833. [22] LI G Y,QIN L,YAO C,et al. Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications[J]. Scientific Reports,2017,7(1): 15394(1)-15394(9).