[1] 王珊,王会举,覃雄派,等. 架构大数据:挑战、现状与展望[J]. 计算机学报,2011,34(10):1741-1752. [2] 孟小峰, 慈祥. 大数据管理:概念、技术与挑战[J]. 计算机研究与发展, 2013, 50(1): 146-169. [3] 米允龙, 米春桥, 刘文奇. 海量数据挖掘过程相关技术研究进展[J]. 计算机科学与探索, 2015, 9(6):641-659. [4] 王芮,韩锐,贾玉祥. 基于Spark的分布式大数据机器学习算法[J]. 计算机与现代化,2018(11):119-126. [5] LANDSET S, KHOSHGOFTAAR T M, RICHTER A N, et al. A survey of open source tools for machine learning with big data in the Hadoop ecosystem[J]. Journal of Big Data, 2015, 2(1):24. [6] 曾旻. 大数据分析挖掘技术及其决策应用[J]. 信息系统工程,2019(3):79. [7] SHAN S. Big data classification: problems and challenges in network intrusion prediction with machine learning[J]. Acm Sigmetrics Performance Evaluation Review, 2014, 41(4):70-73. [8] 毛国君, 胡殿军, 谢松燕. 基于分布式数据流的大数据分类模型和算法[J]. 计算机学报, 2017(1):161-175. [9] BOOTKRAJANG J, KAB?N A . Learning kernel logistic regression in the presence of class label noise [J]. Pattern Recognition, 2014,47(11):3641-3655.[10] 帅仁俊, 沈阳, 陈平,等. 基于logistic回归模型的Hadoop本地任务调度优化算法[J]. 计算机应用研究, 2017(3):727-729. [11] GUO H P,WEI T. Logistic regression for imbalanced learning based on clustering[J]. International Journal of Computational Science and Engineering,2019,18(1):54-64. [12] MAHER M, MOHAMMAD S. Weighted logistic regression for large-scale imbalanced and rare events data[J]. Knowledge-Based Systems, 2014,59:142-148.[13] YANG L, JUN L, CHENG F, et al. Spark-based large- scale matrix inversion for big data processing[J]. IEEE Access, 2016,4:2166-2176.[14] GARCIA S, BENITEZ J M,RAMIREZ-GALLEGO S, et al. A distributed evolutionary multivariate discretizer for big data processing on apache spark[J]. Swarm and Evolutionary Computation,2018,38:240-250. [15] 周芸韬. 基于R语言的大数据处理平台的设计与实现[J]. 现代电子技术,2017,40(2):53-56. [16] 杨姗姗,王松会,宋东东. 基于回归分析的研究及R语言实现[J]. 电子科技,2015,28(10):186-188.
[1]李姚舜,刘黎志*.逻辑回归中的批量梯度下降算法并行化研究[J].武汉工程大学学报,2019,(05):499.[doi:10. 3969/j. issn. 1674-2869. 2019. 05. 017]
LI Yaoshun,LIU Lizhi*.Parallel Research on Batch Gradient Descent Algorithm in Logistic Regression[J].Journal of Wuhan Institute of Technology,2019,(01):499.[doi:10. 3969/j. issn. 1674-2869. 2019. 05. 017]