[1] CHEN X, LI C, HUANG X, et al. On-line estimating the level of hydrophobicity of composite insulators using the digital images[C]//IEEE. Proceedings-Electrical Insulation Conference and Electrical Manufacturing Expo. Indianapolis: IEEE, 2005: 216-221. [2] 张鹏, 胡攀峰, 陈潇一, 等. 高聚物复合绝缘子憎水性能的研究[J]. 智慧电力, 2020, 48(12):97-103. [3] 徐志钮,律方成,赵鹏,等. 拟合方法用于硅橡胶静态接触角的测量[J]. 高电压技术, 2009, 35(10):2475-2480. [4] 梁英,李成榕,丁立健,等. 电晕对HTV硅橡胶憎水性恢复的影响[J]. 高电压技术, 2008,34(1):30-32,40. [5] 宋伟,赵林杰,李成榕,等. 复合绝缘子在线检测技术的发展[J]. 高电压技术, 2005, 31(5):28-30. [6] 冈萨雷斯. 数字图像处理[M]. 2版. 阮秋琦,阮宇智,译. 北京:电子工业出版社, 2007. [7] 钱磊. 复合绝缘子憎水性水珠图像识别与分级[D]. 武汉:中南民族大学,2015. [8] 潘龙,张烜,郝斐, 等. 基于深度卷积神经网络的绝缘子憎水性图像识别方法[J]. 电工技术, 2019(13):30-33. [9] 李转. 基于Canny算子和神经网络复合绝缘子憎水性研究[D]. 郑州:华北水利水电大学,2017. [10] RONNEBERGER O, FISCCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Springer. Medical Image Computing and Computer-Assisted Intervention- MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. [11] 朱琳琳,韩璐,杜泓,等. 基于U-Net网络的多主动轮廓细胞分割方法研究[J]. 红外与激光工程, 2020, 49(增刊1):151-159. [12] 汪佛池,闫康,张重远,等. 采用图像分析与神经网络识别绝缘子憎水性[J]. 电机与控制学报,2014,18(11):78-83. [13] SZEGEDY C , WEI L , JIA Y , et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Computer Society. Boston: IEEE, 2015:1-9. [14] 韩要昌, 王洁, 史通,等. 基于改进GoogLeNet的遥感图像分类方法[J]. 弹箭与制导学报,2019,39(5): 139-142,153. [15] KOLLKALIS C C A, TASAKOS T, KONTARGYRI V T, et al. Hydrophobicity classification of composite insulators based on convolutional neural networks[J]. Engineering Applications of Artificial Intelligence, 2020,91:103613.1-103613.10.
[1]洪汉玉,章秀华,程莉,等.道路病害形态特征的图像分析[J].武汉工程大学学报,2014,(04):70.[doi:103969/jissn16742869201404015]
HONG Han yu,ZHANG Xiu hua,CHENG Li,et al.Image analysis method for road disease morphology characteristic[J].Journal of Wuhan Institute of Technology,2014,(05):70.[doi:103969/jissn16742869201404015]
[2]刘德真,李圆媛*.基于深度学习和多组学数据的肺腺癌分期预测研究[J].武汉工程大学学报,2024,46(02):190.[doi:10.19843/j.cnki.CN42-1779/TQ.202307022]
LIU Dezhen,LI Yuanyuan*.Stage prediction of lung adenocarcinoma based on deep learning andmulti-omics data[J].Journal of Wuhan Institute of Technology,2024,46(05):190.[doi:10.19843/j.cnki.CN42-1779/TQ.202307022]
[3]蒋珺阳,吴晶华*,赵娜娜.基于大核注意力改进的工业管件位姿估计[J].武汉工程大学学报,2024,46(03):304.[doi:10.19843/j.cnki.CN42-1779/TQ.202310018]
JIANG Junyang,WU Jinghua*,ZHAO Nana.Pose estimation of industrial pipe fittings based onlarge kernel attention improvement[J].Journal of Wuhan Institute of Technology,2024,46(05):304.[doi:10.19843/j.cnki.CN42-1779/TQ.202310018]
[4]朱柏霖,卢 涛*,王依伊,等.实际场景人脸超分辨率算法综述[J].武汉工程大学学报,2024,46(05):564.[doi:10.19843/j.cnki.CN42-1779/TQ.202211016]
ZHU Bolin,LU Tao*,WANG Yiyi,et al.Review of real-world face super-resolution algorithms[J].Journal of Wuhan Institute of Technology,2024,46(05):564.[doi:10.19843/j.cnki.CN42-1779/TQ.202211016]